
A Formal Executable Specification of the GinMAC
Protocol for Wireless Sensor Actuator Networks

Admar Ajith Kumar Somappa∗†, Lars Michael Kristensen∗, Knut Ovsthus∗
∗Faculty of Engineering, Bergen University College, Norway

{aaks, lmkr, kovs}@hib.no
†Faculty of Engineering and Science, University of Agder, Norway

Abstract—The inception of Wireless Sensor Actuator Networks
from the existing Wireless Sensor Networks domain was mainly
to satisfy the requirements of the automation applications.
Automation applications can range in a broad domain from
industrial automation, home automation to automation in body
area networks and have specific real-time requirements differing
from each other based on the criticality of the application.
Given the complex nature of WSAN, efficient techniques are
required to be employed to obtain error-free protocol designs.
Formal specification languages like the Coloured Petri Nets assist
designers to capture this complexity with its expressive specifica-
tion language in combination with Standard ML. GinMAC is a
Medium Access Control (MAC) protocol that aims at satisfying
the real-time requirements laid down by the Wireless Sensor
Actuator Networks applications. In this article, we provide a
formal executable specification for the GinMAC protocol. With
this formal executable we precisely capture the abstract features
of this protocol and analyze it. This formal executable is platform
independent and can be used as a basis for further analysis of
the protocol or any protocol extensions that are made to this
protocol. The platform independence allows us to convert this
model to various other analysis tools including model checkers,
network simulators and hardware emulators.

I. INTRODUCTION

Wireless Sensor Actuator Network (WSAN) [1] has had sig-
nificant effect on the process industry by greatly reducing the
operating costs. It has found applications in various industrial
scenarios, for monitoring and supervision, sometimes in closed
loop control where the entire sensing to actuating activity is
automated. The monitoring and supervision activity relates
to the general application of WSN. The closed loop control
particularly introduces real-time requirements and challenges
to the protocol design for WSAN with tighter bounds on delay
and requires high reliability. Apart from industrial scenarios, it
is also used in applications [2] like home automation systems
and in Body Area Networks. WSAN consists of heterogenous
devices in the form of sensors and actuators connected via
wireless links. These devices coordinate with each other to
achieve sensing and actuation tasks for a given application.
The sensors and actuators used are generally low cost, low
power computation devices with radio modems. Actuators
in some scenarios are resource rich and wire powered. The
sensors monitor a given area, collect data and feeds it to the
actuators in real-time, either directly or via a central entity
known as a Sink. In a network topology containing a sink,
the collected data may be analyzed and consolidated before

being communicated to the actuators. Actuators then act on
this collected data as required.

GINSENG [3] is an EU project aimed at designing perfor-
mance controlled WSAN. GINSENG proposes a solution for
WSAN with bounded delay and reliability requirements. It
assumes pre-planned network deployment as a step towards
building a sensor actuator network with reliable communi-
cation. As a part of the GINSENG project, an architecture
was proposed including various software components, network
protocols, operating system and a middleware to handle data
communication and processing. One major element of the
network protocols is the GinMAC [4] protocol that was
proposed during this project. The authors claim to achieve 97%
reliability results in terms of packet delivery under relevant
conditions. The protocol was designed to satisfy specific delay
bounds both for sensors and actuators. The main features of
this protocol include Off-line Dimensioning, Exclusive TDMA
slot allocation and Delay Conform Reliability Control. It pro-
vides end-to-end guarantee and the reliability control provided
allows for predictability of the resulting network solution.
Although GinMAC was proposed for a specific application
in the GINSENG project, its important features could result
in optimal solutions for various other scenarios. GinMAC is
limited in terms of its network scalability since it was designed
for very small number of nodes in the order of 25 [4]. This
limitation can be overcome by extensions to the protocol thus
making it applicable to wide deployment scenarios.

WSANs are complex concurrent real-time systems, thus
analysis of these systems in itself is a complex procedure.
Industries being clearly business oriented expect the imple-
mentation to realize the pre-set requirements efficiently. The
possible difference between the specification and implementa-
tion can be minimized by using model-based verification and
validation techniques. Also, the wireless channel is a pure non-
deterministic entity in itself. Thus, to reduce the uncertainties
in the implemented solution it is essential to start with precise
design models. We use an expressive formal specification
language like Coloured Petri Nets (CPN) to specify GinMAC
thus providing a concise design to be analyzed. Modeling of
the GinMAC protocol is done based on the article [4] and the
example presented in it. Further, this platform independent
design can be used as a common platform to be then trans-
formed to other specification languages for further validation
and verification. Sensor networks have been designed andc© 2013 IEEE. Please obtain permission from IEEE for any use/re-use.

validated in tools such as Uppaal in the past [5], [6]. With the
added strength of probabilistic/stochastic modeling to powerful
tools like Uppaal Statistical Model Checker [7] and PRISM
[8], model checking could produce more valuable results.
Inherently, the model checkers do not scale well to large
numbers but are rather used for fine tuning the model to
obtain optimum performance. Thus for scalability verification,
network simulators are used. Based on the current user base
and available facilities, OMNET++ based MiXiM [9] and
Castalia [10] are among the few very important network sim-
ulators and can be used to assess scalability. After the current
design is validated, analyzed and verified via simulation and
model checking, we can proceed with the implementation to
consolidate all the results obtained. Also, this implementation
could be partly obtained from the CPN model resulting in a
concise implementation.

The focus of this article is to provide a platform indepen-
dent formal executable high level model specification for the
GinMAC protocol. This modeling is done using CPN. The
rest of the article is organized as follows: firstly we give
a brief introduction of the GinMAC protocol and Coloured
Petri Nets basics in section II. For extended knowledge on
the CPN constructs one can refer to [11]. Modeling aspects
for the GinMAC protocol in a WSAN context is described in
detail in section III. In the modeling section, the constructs
that are important to understand the model are explained in
detail and the rest are omitted owing to limited space. We
conclude along with a short discussion on the related work in
this domain. This article assumes prior knowledge of WSN
MAC protocol basics.

II. BACKGROUND

A. GinMAC

GinMAC is a Timed Division Multiple Access (TDMA)
MAC protocol, proposed for the GINSENG project with
concrete requirements of reliable and timely delivery of data.
Routing function in terms of tree topology forwarding is also
embedded into this protocol via cross layering. The network
topology is tree based. GinMAC also address energy efficiency
issues via efficient duty cycling by introducing unused slots
in the GinMAC frame. GinMAC provides three main features
that is designed to satisfy the requirements.

Off-line Dimensioning. For GinMAC, authors assume that
network deployment is known. Thus, scheduling computations
and other required static protocol operations can be made
apriori. A TDMA schedule is created with a given frame
length of F. This frame is then divided into three types of
slots: basic, additional and unused. The basic slots are for
regular data transfer. The additional slots are used to increase
reliability. Lastly, the unused slots are used to achieve low
duty cycle. Delay requirement for the protocol is specified as
DS , for the maximum delay allowed for sending data from any
sensor to the sink and DA, for the maximum delay allowed for
sending actuator data from the sink to the actuators. The offline
dimensioning is done according to DS and DA in mind and
requires to meet the delay requirement F < min{DS , DA}.

Exclusive TDMA. GinMAC assumes data transmission of
maximum length and acknowledgement is accommodated in a
single slot. The slots (including additional) used are exclusive,
and cannot be re-used by other nodes in the network. A
particular topology envelope is defined with maximum hop
distance H of 3 and the maximum number of nodes that can be
accommodated in a single network managed by one sink is 25.
Basic slots are used for both types: sensor and actuator data,
and sometimes for configuration commands if required. The
sensor data is sent upstream from sensors to the sink and the
actuator data is sent downstream from the sink to the actuators.
Given the tree structure, the nodes having children need to
have basic and additional slots for its children as well. Sensor
data from the leaf nodes is sent upstream to their parents and
each receiving node sends it to its parent node. This process
continues until the data reaches the sink node. The actuator
data is sent downstream from the sink to the actuator node
by forwarding it to one of its children nodes, under which the
actuator node exists. The process continues until the actuator
data reaches the actuator node.

Delay Conform Reliability Control. Wireless channels are
highly susceptible to interference. Just using basic slots does
not satisfy the underlying requirements. Additional slots are
used for this purpose to increase reliability. The number of
additional slots required per basic slot depends on the channel
conditions. The channel characteristics are captured by running
some experiments in the deployment area and calculating
worst-case link reliability. During the protocol operation links
that have successful data exchange are marked as good links.
GinMAC uses two methods to specify good links. The first one
uses Packet Reception Rate (PRR) with good links defined as
the ones that have PRR better than a given threshold. The
second method calculated the burst errors occurred during
the experiment to calculate worst case link reliability. A
good link was then defined as a link with maximum of
Bmax consecutive transmission errors and minimum of Bmin

consecutive successful transmissions in between two burst
errors. The rest of the slots in the frame apart from basic and
additional slots are used as unused slots. Various topology
control mechanisms are also proposed for new nodes to be
able to join the network provided that the number of nodes
does not exceed the maximum. We assume static network with
no node joining procedure for simplicity.

The topology used in modeling example is shown in figure
1 and consists of 4 sensors, 1 actuator and 1 sink. Each sensor
and actuator has a basic slot in each GinMAC frame. For a link
with Bmax = 1 and Bmin = 1, GinMAC defines 1 additional
slot per sensor/actuator. For a given delay requirement say
DS = 1s and DA = 1s we can construct a GinMAC
frame with (F < min{DS , DA}) = min{1,1}= 1s). One
GinMAC frame accommodates slots required by each node
in the network including sensor data, actuator data and sleep
slots. All the data communications from every sensor to sink
and sink to every actuator is carried out within this frame and
is repeated for each frame. For a CC2420 transceiver with
slot size of 10ms and with the frame required to fit within 1s,

Fig. 1: GinMAC Topology

we have 100 slots per frame. We assume that actuators only
receive data and do not send any data. Thus for upstream data
(sensors to sink) we have 6 basic slots and and 6 additional
slots. For downstream (sink to actuators) we have 2 basic slots
and 2 additional slots, and one slot is reserved for configuration
commands. Remaining 83 slots in the GinMAC frame are used
as unused slots for energy efficient duty cycling. GinMAC
frame for the current example can be seen in figure 2.

Fig. 2: GinMAC frame

B. Coloured Petri Nets

CPN is a discrete event based extension of Petri Nets com-
bined with Standard ML, a functional programming language,
thus making it more expressive. CPN is designed to model
complex concurrent systems and has been used in various
application domains [12]. CPN includes the notion of global
time and allows tokens to be time stamped by defining the data
types as timed. CPN Tools [12] is the software with its own
graphical user interface to enable easy modeling. CPN Tools
also includes other tools for state-space analysis, hierarchical
model construction, and simulation-based performance analy-
sis. The hierarchy allows for modular representation, breaking
up complex parts into further smaller parts representing some
specific function.

A process

PACKET PACKET

initPacket [condition]

B
packet

@+delay input (packet);
output (processedPacket);
action
process(packet);

processedPacket

Fig. 3: CPN example

CPN uses graph like constructs with prime components
including places, transitions, arcs and tokens. An example is

shown in figure 3, with two places labeled A and B. A place
is of a defined data-type, PACKET in this example. A starting
place in a net is initialized with certain data values called as
tokens in this context. In our example initPacket defines the
initial tokens of place labeled A. A transition labelled process
connects these two places with arcs. The tokens are passed
between places and transitions using these arcs. Transitions
consume tokens from incoming edges and produces/creates
tokens on output edges. Between the process of consuming
and creating new tokens, we can perform certain actions on
the input tokens and produce output tokens accordingly. In
our example we process the input token using processPacket
function and produce processedPacket as output. The execu-
tion of the transitions also known as firing can be decided
using certain guard conditions which evaluate to either true
or false, condition in this case. Guard conditions/functions are
enclosed within square brackets. The firing of transitions can
only take place if there are tokens on all input arcs and the
guard condition evaluates to true (boolean). Given the use of
global time and the fact that tokens are timed, this time can be
incremented either on the arcs or on transitions. We add delay
as an indication of the processing time taken by the process
transition, delay here is an integer value.

III. GINMAC CPN MODEL

Fig. 4: Module Hierarchy of the Wireless Sensor Actuator
Networks

Modeling approaches at the design level are high level
abstracts of the actual implementation. In this article, the
modeling in CPN focuses on certain details of the sen-
sor/actuator nodes, with brief description of other modules.
Detailed modeling constructs of CPN can be found in [11].
The modeling hierarchy is shown in figure 4 with WSAN at
the top level with sensor/actuator and wireless channel. The
sensor/actuator is further subdivided into Application, Gin-
MAC, and Radio modules. The GinMAC function which is
the focus of this paper is further divided into MAC receiver and
MAC sender module which has a submodule slot identification
and are responsible for all MAC functions. The CPN model
for WSAN is shown in figure 5 with sensors and actuators
being represented using a single substitution transition. A
substitution transition is an abstract representation of a more
detailed net, it represents the module hierarchy in CPN.
Substitution transition in-turn can have further substitution
transitions if required. We represent both sensors and actuators

in a single module since the focus is on the communication
part and both sensors and actuators have the same structure
from this perspective. Separate channel for receive and send
is more a representative model than actual to facilitate easy
understanding of packet flow via simulation.

Wireless Channel

Wireless Channel

ChannelAccess

 Receive

PACKET

ChannelAccess

Send

PACKET

Wireless Channel

Sensor/Actuator

SensorActuatorSensorActuator

Fig. 5: Wireless Sensor Actuator Network

GinMAC

GinMAC

Radio

Radio

Application

Application

To MAC Buffer

PACKET

Packet from Radio

PACKET

MAC Radio Control

nodeMACstatus

From Channel

In
PACKET

To Channel

Out
PACKET

Packet to Radio

PACKET

From MAC

PACKET

OutIn

Application

Radio

GinMAC

Fig. 6: Sensor/Actuator Module

Sensor/Actuator module. The Sensor/Actuator module
is shown in figure 6. In the sensor/actuator module, the
GinMAC module is described in sufficient detail and other
functions like application, radio (physical layer) and wireless
channel are mostly abstract. One of the nodes in the network
is designated as a sink, which acts as the root node of the
tree topology. The application layer for the sensor nodes
generates sensor data and the sink node takes in all these
sensor data and generates actuator data. Configuration data
can be generated as well. Configuration data generated by the
sink can be either periodic (recurring) or sporadic (occurring
at random instances). We have constructed a periodic model,
with configuration commands being sent every 10 frames.
Alternatively, this can also be modeled sporadically. Note
that the different sensors are differentiated via their node
identifiers. The declaration of the node identifier (nodeID)
along with the packet declaration in CPN is defined as follows
and is explained in detail in the next paragraph.

colset nodeID = INT with 0..maxNodes;
colset source = nodeI;colset destination=nodeID;
colset sequenceNo = INT with 0..maxSequenceNo;
colset packetType = with DATA|ACK|CONFIG;
colset PACKET = product
source * destination * packetType * sequenceNo timed;

sendToMAC(Packet p)

p p

p

(nextPkt(Packet p))@+(maxSlots*dataPeriod)

p

p@+(maxSlots*configPeriod)

p

Data
Packets

Config
Packets

Send Application Packet

To MAC

Out PACKET

Sensor/Actuator
 Data

dataPackets

PACKETConfig Commands

configPackets

PACKET

From MAC

In PACKET

Application

PACKET

In Out

Fig. 7: Application module

Application module. The Application module is abstract
and we skip network module since routing is defined by the
GinMAC protocol via cross layering. The tree topology de-
fined for the network is used as the routing specification where
sensors route the data upwards to the sink via intermediate
sensors/actuators and sink routes data to actuators via inter-
mediate sensors/actuators. The CPN model for the Application
module can be seen in figure 7. Time is an important entity
in WSAN, thus we use time-stamps in the GinMAC module.
Packets can be easily differentiated according to their time-
stamps and sequence numbers if required. A packet is defined
as a data-type with 4 fields: source, destination, packet type,
and sequence number as shown in the previous code segment,
and it is defined as timed in order to use the global time
concept. Source, destination and sequence numbers are of
integer (INT) type and packet type defines three possible types,
DATA (sensor data), ACK (acknowledgement) and CONFIG
(configuration packets). The product keyword in PACKET
colour set defines all possible combinations of colour sets
that follow. The values maxNodes and maxSequenceNo defines
the maximum nodes in the network and maximum sequence
number of packets allowed. In the GinMAC protocol, each
sensor has to send DATA in their slots irrespective of whether
there has been any sensor reading or not. Thus there is
DATA sent in every frame. This periodicity of the packets
is maintained by time-stamping the next packet (DATA and
CONFIG) with the delay required to satisfy their periodicity.
The variable p in figure 7 represents packet and the time-stamp
p@+(maxSlots∗dataPeriod) represents restoring the token
at the place ”Sensor/Actuator Data” with a time-stamp that
would enable it in the next frame. Similar time-stamp delay
method is used on the CONFIG packets, p@ + (maxSlots ∗
configPeriod). maxSlots represents maximum number of
slots in each frame. The constant dataPeriod represents the
period duration after which the data appears again, i.e in the
next frame. The constant configPeriod represents the period
duration after which configuration command is to be sent
again.

GinMAC module. The GinMAC module is shown in figure
8. Packet arriving from the Application module is sent to
the MAC sender module where packet (DATA and CONFIG)

MAC Sender
MAC Sender

MAC Receiver

MAC Receiver

Single slot
buffer

initiateBuffer

To MAC Buffer

In PACKET

Packet From Radio

In
PACKET

From MAC

Out PACKET

MAC Radio Control

Out

nodeMACstatus

Packet To Radio

Out
PACKET

OutOut

Out

In

In

MAC Receiver MAC Sender

singleSlotBuffer

Fig. 8: GinMAC module

(sn,EMPTY,retry)

p

(slotID,count)

macRadioCmd(count)

(sn,EMPTY,retry)

p

(sn1,Packet p,retry)

p

(sn1,EMPTY,one)

(sn1,Packet p,done)

p

(updateBuffer(sn,bufDATA,retry))

(slotID,count)

(sn1,EMPTY,retry)

sendPkt(sn1,p,retry)

getPkt(bufDATA)

(sn,bufDATA,retry)

No Packet
to Send

[mySlot1(sn,slotID)]

Discard
Duplicates

Discard failed
 packets

Slot Identification

Slot Identification

Start
transmitting

[bufferEmpty(sn1,p)]

Transmit Packet

[mySlot(sn,slotID,bufDATA)]

Discarded
Packets

PACKET

MAC
Buffer

In
PACKET

MAC Radio Control

Out

Current Slot

slotCounter

Single slot
buffer

I/O

initiateBuffer

singleSlotBuffer

Packet to Radio

Out
PACKET

Out

I/O

Out

In

Slot Identification

nodeMACstatus

(macRadioCmd(count)++1`(sn,MTX))

Fig. 9: MAC Sender Module

transmission is handled. Packets arriving from the radio mod-
ule are serviced by the MAC receiver module, which also is re-
sponsible for sending acknowledgements (ACK) for all DATA
packets received. Each packet transmission is accompanied by
a radio control command from the MAC to switch the radio to
transmission state. The GinMAC module includes a single slot
buffer that is used by both of its submodules MAC Sender
and MAC Receiver. This single slot buffer saves one packet
for each node that is to be transmitted or is being transmitted.
It is defined using the data-type with three fields, the node
identifier, buffer, and the retransmission counter. Buffer data-
type is a special type which is a union of a packet type and a
value EMPTY representing empty buffer. Thus the buffer has
either one packet in it or is empty.

MAC Sender module. The MAC Sender module is shown
in figure 9. For simplicity some parts have been moved and
may not be exactly in position with respect to figure 8.
The incoming packets from the MAC buffer are transferred
to a single slot buffer, where the packet is stored until it
reaches the destination or maximum retransmission attempts
are completed. After maximum retries the DATA packets are
discarded and are recorded as discarded packets. When a
packet is being sent over the channel, the MAC module issues
a radio command to switch to transmission mode. Duplicate
packets arriving at the MAC buffer due to failure of ACK
packets are discarded by looking up the single slot buffer.
Also, when a node has the current transmission slot and

has no packets to send, a SLEEP radio command is sent
to the Radio module indicating it to switch off radio parts
via macRadioCmd function as shown in figure 8. The MAC
Sender module contains a sub-page for Slot Identification
which keeps count of the time and represents the current slot
in the GinMAC frame.

if count<maxSlots
then count+1
else 0

(currentSlot(count),count)
count

Increment
Slot

@+slotTime

Current Slot

Out

initiateSlotting

GinMACframe
Out

Slot Counter

slotInfo

Fig. 10: Slot Identification Module

Slot Identification module. Given the Offline Dimensioning
feature, the slot division is done statically and is stored on
each of the nodes. Also all nodes are time synchronized since
GinMAC follows a TDMA schedule. In the GinMAC model,
slot division is stored statically and depending on the current
time and their schedule the sensor/actuator nodes go to sleep
or wakeup. This is represented by the Slot Identification
module in the CPN model for the GinMAC protocol shown in
figure 10. We start at time zero with the token initialized by
the initiateSlotting value and the Increment Slot transition
increments the slot counter after the given slotTime which is
10ms in our example. The nodeID of the node which has
the current slot is calculated and sent over the arc to the
Current Slot place along with the counter value (count).
This counter value is used do decide the radio commands
to be sent by the GinMAC modules of other nodes in the
network. The counter value is reset when the GinMAC frame
is completed, which is assessed using the value maxSlots
in the conditional statement on the arc. maxSlots indicates
maximum allowed slots in the GinMAC frame. The Delay
Conform Reliability Control feature is represented by the
additional slots given to each node in the network for transfer
of DATA (sensor/actuator).

(sn,Packet p,retry)

(sn,EMPTY,one)

PACKET

PACKETPACKET

MAC Radio Control

Out

nodeMACstatus

initiateBuffer

singleSlotBuffer

PACKET

Out

Packet To Radio

OutOut

[isNotACK(p)]

To MAC
Buffer

OutOut

P_HIGH

Clear buffer

From MAC

OutOut

Packet From Radio

InIn

Single slot buffer

I/OI/O

p'
(isDestination(p))@+3

Incoming
DATA

[clearPkt(retry,Packet p')]

sendACK(p)p (sendTransmissionControl(p))@+1

(forward(p))@+1

Fig. 11: MAC Receiver Module

MAC Receiver module. Incoming DATA is handled in this
module (see figure 11), ACK is sent for every successfully
received DATA and the DATA is then forwarded to the
Application module by transferring it to the from MAC output
port. For each ACK sent, the MAC Receiver module of the
receiving node sends in a radio command to switch radio to

transmission mode. DATA packets that have to be forwarded
to other sensor nodes are passed on to the MAC buffer and
are handled at the MAC Sender module and ACK is sent for
the same from the MAC Receiver module. When an ACK
is successfully received for a DATA packet, it is then cleared
from the single slot buffer and this transition is given a higher
than normal priority. This is to prevent the non-determinism
when after maximum retries is completed and ACK is received
for a packet, the delete packets transition and clear buffer
transition are both enabled simultaneously.

p

(sn,RX)

(sn,radioStatus)
setRadioState
(sn,macStatus)

(sn,radioStatus)

(sn,radioStatus)

p

p

p

changeRadio
State

Packet
to Send

transmitPkt(sn,
radioStatus,Packet p)

Packet
to Receive

[receivePkt(sn,
radioStatus,Packet p)]

Data From PHY

Out
PACKET

Radio State

initiateRadio

nodeRADIOstatus

MAC Radio Control

In

nodeMACstatus

From Channel

In

PACKET

PACKET

To Channel

Out

PACKET

OutIn

In

Out

Data to PHY

InIn

@+(radioDelay(macStatus,radioStatus))

(sn,macStatus)

Fig. 12: Radio Module

Radio module. The Radio module is modeled in an abstract
way and is shown in figure 12. The incoming MAC control
messages (radioCommand) are used to change the state of
the radio between three possible states, sleep (SLEEP), re-
ceive (RX) and transmit (TX). Two processing transitions are
modeled to process sending and receiving of the packets from
the wireless channel. Both sending and receiving processes
need to have the proper radio state to go through their
packet processing, which being TX for transmission and RX
for receiving. Essentially, the Radio module here is clearly
abstract but could be useful in modeling if certain techniques,
like the Carrier Sense Multiple Access (CSMA), are to be
used in the model or any other modifications that involves
radio functionality being managed by the MAC protocol.

@+wirelessDelay(p)

PACKET

Channel
Access Send

InIn
p

Channel Conditions
Channel

Access Receive
OutOut

processPkt(p)

PACKET

Fig. 13: Wireless Channel

Wireless Channel module. On the basic level the wireless
channel receives a packet and sends it back to the Sen-
sor/Actuator module as shown in figure 13. But between this
sending and receiving various phenomena occur. The wire-
less signal is subjected to various effects, particularly path-
loss, interference, shadowing, and multi-path fading. Thus
modeling a wireless channel in itself is a very complex
problem. Over the years, several proposals have been made to
mathematically model the wireless channel, e.g. the channel
model for 802.15.4 [13]. These mathematical models can
be used as a basis to model the wireless channel model in
CPN, we omit this part for simplicity. For simple simulation

purposes Packet Error Rate (PER) can be used that can be
calculated for the range of possible Bit Error Rate in industrial
environment which is said to be 10−2 to 10−6 [14]. PER is
the probability with which each packet in the network can
fail during transmission. Similarly BER is the probability with
which each transmitted bit can fail. These two terms are widely
used in WSN.

IV. RELATED WORK AND CONCLUSION

Martı́nez [15] proposed a formal specification and design
technique for WSAN. The article concentrates on the real-time
scheduling of tasks on the CPU part, and uses CPN modeling
formalisms to represent various architectural components and
its working. Another work on using formal modeling tools is
an article regarding modeling biomedical sensor networks [5]
which concentrates on modeling the Chipcon CC2420 radio
transceiver and uses constant bit error rate to model failure
of packets. They also verify certain quality of service require-
ments for the network. In [16], authors show the capability
of generic Petri Nets by designing a minimal model of the
EQ-MAC protocol. The study also shows that Petri Nets is
an efficient tool for modeling and to carry out performance
analysis to a certain extent. Heidarian et al. [6] used Uppaal
for model checking the clock synchronization processes in
WSN using Uppaal and problems were identified for certain
topologies.

In this article, we have modeled a formal executable spec-
ification of the GinMAC protocol. GinMAC is aimed at
Wireless Sensor Actuator Networks with prime requirements
including predictable performance, reliable and timely delivery
in addition to energy efficiency. The offline scheduling and
methods to alleviate packet losses and increase reliability in
GinMAC supports predictability, an important requirement in
industrial perspective. We have also verified the behaviour of
the protocol model via simulation and the state-space analysis
features of CPN. This formal executable can be used as a basis
for further protocol extensions that can be proposed using Gin-
MAC features and also for comparative analysis purposes. This
executable model also serves as a common platform for further
conversions to other analysis tools specialized in predictability
analysis, scalability analysis and various other performance
analysis as required by the application. Also, there have been
some efforts towards automatic code generation from CPN
models [17], [18], which assist in reducing the errors made
when converting design to implementation and finalizing the
model to precise implementation. Thus, we can also obtain
automatic validation of the implementation code against the
initial design model reducing the overall time requirement in
building protocol extensions.

REFERENCES

[1] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor networks:
research challenges,” Ad Hoc Networks, vol. 2, no. 4, pp. 351–367, 2004.

[2] R. Verdone, D. Dardari, G. Mazzini, and A. Conti, Wireless sensor and
actuator networks: technologies, analysis and design. Academic Press,
2010.

[3] “www.ict-ginseng.eu.” GINSENG Project.

[4] P. Suriyachai, J. Brown, and U. Roedig, “Time-critical data delivery
in wireless sensor networks,” in Proceedings of DCOSS, vol. 6131,
pp. 216–229, 2010.

[5] S. Tschirner, L. Xuedong, and W. Yi, “Model-based validation of QoS
properties of biomedical sensor networks,” in Proceedings of EMSOFT,
pp. 69–78, 2008.

[6] F. Heidarian, J. Schmaltz, and F. Vaandrager, “Analysis of a clock
synchronization protocol for wireless sensor networks,” Theoretical
Computer Science, vol. 413, no. 1, pp. 87–105, 2012.

[7] A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen,
J. Van Vliet, and Z. Wang, “Statistical model checking for networks
of priced timed automata,” in Proceedings of FORMATS, pp. 80–96,
2011.

[8] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: probabilistic
model checking for performance and reliability analysis,” SIGMETRICS
Performance Evaluation Review, vol. 36, no. 4, pp. 40–45, 2009.

[9] A. Köpke, M. Swigulski, K. Wessel, D. Willkomm, P. Haneveld,
T. Parker, O. Visser, H. S. Lichte, and S. Valentin, “Simulating wireless
and mobile networks in omnet++ the mixim vision,” in Proceedings of
SIMUTools, p. 71, 2008.

[10] A. Boulis, “Castalia, a simulator for wireless sensor networks and body
area networks,” National ICT Australia Ltd, Australia, 2009.

[11] K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. 1st ed., 2009.

[12] K. Jensen, L. Kristensen, and L. Wells, “Coloured Petri Nets and CPN
Tools for modelling and validation of concurrent systems,” International
Journal on STTT, vol. 9, no. 3-4, 2007.

[13] A. F. Molisch, K. Balakrishnan, C.-C. Chong, S. Emami, A. Fort,
J. Karedal, J. Kunisch, H. Schantz, U. Schuster, and K. Siwiak, “IEEE
802.15.4a channel model-final report,” IEEE P802, vol. 15, no. 04, p. 41,
2004.

[14] V. Gungor and G. Hancke, “Industrial wireless sensor networks: Chal-
lenges, design principles, and technical approaches,” IEEE Transactions
on Industrial Electronics, vol. 56, no. 10, pp. 4258–4265, 2009.

[15] D. Martı́nez, A. González, F. Blanes, R. Aquino, J. Simo, and A. Crespo,
“Formal specification and design techniques for wireless sensor and
actuator networks,” Sensors, vol. 11, no. 1, pp. 1059–1077, 2011.

[16] J. Ben-Othman, S. Diagne, L. Mokdad, and B. Yahya, “Performance
evaluation of a hybrid MAC protocol for wireless sensor networks,” in
Proceedings of MSWiM, pp. 327–334, 2010.

[17] K. I. F. Simonsen, L. M. Kristensen, and E. Kindler, “Code generation
for protocols from cpn models annotated with pragmatics,” in 24th
Nordic Workshop on Programming Theory (NWPT 2012), 2013.

[18] V. Veiset and L. M. Kristensen, “Transforming platform independent
cpn models into code for the tinyos platform: A case study of the RPL
protocol,” in Proceedings of PNSE, June 2013. (to appear).

