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ABSTRACT
Model-Driven Software Engineering (MDSE) is a promising
approach for the development of applications, and has
been well adopted in the embedded applications domain
in recent years. Wireless Sensor Actuator Networks
consisting of resource constrained hardware and platform-
specific operating system is one application area where the
advantages of MDSE can be exploited. Code-generation is
an integral part of MDSE, and using a multi-platform code
generator as a part of the approach has several advantages.
Due to the automated code-generation, it is possible to
obtain time reduction and prevent errors induced due to
manual translations. With the use of formal semantics in the
modeling approach, we can further ensure the correctness
of the source model by means of verification. Also, with
the use of network simulators and formal modeling tools, we
obtain a verified and validated model to be used as a basis for
code-generation. The aim is to build protocols with shorter
design to implementation time and efforts, along with higher
confidence in the protocol designed.
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1. INTRODUCTION
Wireless Sensor-Actuator Networks (WSANs) consists

of a network-connected sensors and actuators working
towards a specific mission. It is a branch of the
existing Wireless Sensor Network (WSN) systems. Sensors
and actuators in WSAN are resource constrained small
devices usually powered by batteries. WSAN has several
application domains such as process automation and factory
automation, and is thus widely applicable in an industrial
setting. One important setting in which WSAN is applicable
is the control-loop of automation processes. Systems
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with control-loops have stringent requirements, and these
applications are often safety-critical. This implies that
it is important to have a sound design methodology
for developing software solutions to be deployed on the
sensors and actuators. Quite often the design methodology
includes modeling of the protocols. Later these models
are manually converted to simulation code and further
analyzed. Some development approaches also includes
model-checking to check for correctness. As the last step,
models are transformed to the implementation platform
code. This approach towards design of WSAN solutions can
be combined with existing software engineering approaches,
to strengthen the reliability of the software generated and
to reduce the time for development.

Model-Driven Software Engineering (MDSE) is one such
approach that has long been seen as a prominent approach
for software engineering. MDSE uses models as primary
artifacts. MDSE is an extensively used methodology
across several domains for development of applications.
Advantages of MDSE approach include shorter time from
design to implementation, verified and validated models
used for automatic code generation. In an industrial setting,
continuous work is done in reducing the cost of developing
software and the time required, and MDSE works towards
this. In MDSE approaches, the initial model is an abstract
and platform independent representation of the protocol.
This abstraction allows the designers to focus on creating a
model with proper functioning. Combining this abstraction
step with formal approaches allows further improving the
verification and validation process. The abstract models
can be model-checked for verification and can be further
simulated to obtain initial performance assessment results.
This minimizes the possibility of errors in the code generated
to a further extent.

One tool that allows model-checking and simulation is
Coloured Petri Nets (CPN) Tools [5]. It is based on the
expressive language CPN combined with the Standard ML
programming language. CPN has been previously used for
modeling and verification of network protocols [1]. This
combined with the PetriCode [14] tool, forms a complete
MDSE approach for development of network protocols
and can be applied to develop WSAN protocols as well.
PetriCode is a code generation tool that takes platform-
independent CPN models as input and produces platform-
specific code for various platforms like Java, Clojure and
Groovy. The aim of this work is to extend PetriCode to
support platform-specific code generation for sensor network



platform such as the TinyOS [9] and for sensor network
simulators. Using a CPN model as a starting point allows
us to base our implementations on verified and functionally
correct model, giving confidence in the correctness of the
generated code. In this article, we mainly focus on providing
an MDSE approach for protocol development for WSAN
using CPN models and the PetriCode tool. Generation for
disparate platforms (MiXiM [6],TinyOS) is still challenging
because the model must then support several programming
models in the implementations. For the model, however
this can be seen as an advantage as it forces the model
to focus on the logical operation of the protocol and not
include implementations details. As a case study we use the
GinMAC [15] protocol specification. GinMAC protocol was
designed for WSAN, with strict packet delay requirements.

2. RELATED WORK
Model-driven software engineering has been used in the

WSN domain for a while now [10, 18]. There have
been several work proposing various frameworks for rapid
development of WSN protocols, dominantly based on
Doman Specific Modeling Languages (DSML) [2, 4] or the
Unified Modeling Language (UML) [10, 18, 13]. In [11],
a design framework is proposed which facilitates behavior
simulation, and multi-platform code-generation. It requires
multiple steps for platform-specific code generation and the
simulation done is very basic. In [12], an architectural
framework, Architecture for Wireless Sensor and Actuator
Network (ArchWiSeN) is proposed. This architecture is
based on UML diagrams as platform independent high level
models and consider TinyOS platform for code generation
and simulation was performed on TOSSIM. Moppet [2] is
an MDSE based method that uses feature modeling, in-tool
performance estimator and code generation for TinyOS. In
[4] the authors concentrated mainly on the modeling aspects
proposing an architecture consisting of separate modeling
languages for environment, software architecture and node
modeling. Mapping is used to create relation between these
modeling languages. They also propose code generation
as possible future work based on existing model to text
generators. In [16], a model-driven development approach is
proposed based on a Domain Specific Language (DSL) for
WSN. They perform a model-to-model transformation from
the initial platform independent model to a platform specific
model. This platform specific model (TinyOS) is then used
for code generation. In [17] a code-generation technique for
nesC was provided. The article [17], focussed only on the
code-generation part and specifically the TinyOS platform,
thus creating platform-specific code generation software.
The key differences between the existing and our MDSE
approach are: firstly we provide a formal platform to begin
modeling with, which also provides simulation and state-
space analysis possibilities, secondly we provide conversion
possibility to event-based network simulator (MiXiM [6])
that has been used in WSN research. These features are
provided along with code-generation for a sensor specific
platform like TinyOS.

3. OVERVIEW OF APPROACH
In this section, we provide an overview of our proposed

MDSE approach for protocol design and implementation.
The approach is illustrated in figure 1. The starting point

of the approach is an abstract model of the given protocol.
For modeling purposes, we use CPN Tools [5]. Along
with modeling and verification, CPN Tools allows for initial
simulation. Using CPN Tools, developers can create a
formal executable model of a protocol. Developers can also
perform behavioral and functional verification, state-space
analysis, and initial simulation. Based on the analysis,
developers can verify and validate the given model, based
on its requirements specification. In the next step, the
refined CPN model is converted to code models using the
PetriCode tool [14]. PetriCode is a code generation tool that
is designed to automatically generate implementations of
network protocols for various platforms. PetriCode requires
the models to be annotated with code generation pragmatics.
These pragmatics are structural annotations on CPN models
that are bound to code-generation templates via template
bindings. In PetriCode the pragmatics and the template
bindings as well as the structure of the CPN model is used
to guide code generation without needing to translate or
interpret the ML code of any given CPN model. Using
the PetriCode tool, developers can automatically generate
code for model-checkers, network simulators, and hardware
platforms. The implementation generated for the simulation
and model checking platforms are used to perform further
analysis. This can further strengthen the developer’s
confidence in the correctness of the final implementation.

Figure 1: Model-based Development Approach

For the initial work, we have selected certain tools namely,
Uppaal [3] /PRISM [7] for model-checking, Omnet-Mixim
[6] for network simulation, and TinyOS [9] for platform-
specific simulation and implementation. All these have been
successfully used in a number of application case studies.
Using this approach, before the final implementation, the
model can be further tested using the tools listed above.
Uppaal/PRISM are powerful probabilistic model-checkers
that allow for further exhaustive behavioral and functional
analysis. Given the stochastic nature of the wireless channel
used for communication in WSAN, it is essential to perform
a probabilistic study for the model-checking procedure.
Omnet-Mixim is a discrete event simulator that allows
for network simulations using pre-defined wireless channel
models and also has rich protocol library thus provides
necessary infrastructure. From the results obtained by



Figure 2: Code generation architecture

model-checking and simulating the model, the CPN model
can be further refined to eliminate possible design flaws and
to provide high quality software for the implementation.
The event based sensor network platform TinyOS is used
for hardware implementation code generation. TOSSIM [8]
is the emulator for TinyOS platform, thus nesC code can be
simulated.

The flexibility of PetriCode tool that makes it possible
to generate code for different platforms is an important
advantage over most other existing tools. Developers can
create their own templates and bindings for a platform based
on the pragmatics defined by the tool. For the design,
analysis, and implementation of protocols, platform specific
codes in C++ for simulation, Timed Automata for model
checking, nesC for TinyOS and TOSSIM is required. The
challenge in the current work is to be able to extract multi-
platform representations out of a single CPN model. Given
that different platforms such as TinyOS which has a event-
based code structure, Java and C++ have object-oriented
structure, it is essential to exploit the similarity in them to
be able to generate code from a single model.

4. MODELS AND CODE GENERATION
An important part of MDSE is code-generation. It

is essential towards reducing the errors in the coding
process and reducing time required to generate code from
design. In our framework, we use PetriCode tool [14] to be
able to generate platform-specific code and simulation tool
code. Our aim is to extend the PetriCode tool to provide
implementation and simulation code. The code generation
framework is shown in figure 2. The code generation is
carried out in four steps, detailed below.

1. Create a CPN model of the protocol for which an
implementation is to be obtained.

2. Annotate modeling elements with pragmatics to
facilitate code generation. PetriCode models have an
explicit control-flow path that is defined by <<Id>>
pragmatics. This allows PetriCode to use the CPN
model structure to generate code for programming
languages of several paradigms

3. Create bindings and templates for the platform to
which the resulting code has to be generated.

4. Use PetriCode to generate code using proper bindings.

Multiple steps are involved in going from CPN model to a
platform-specific code for which [14] can be referred. In this
article, we use PetriCode tool and extend its functionalities
to support WSAN protocol development. The bindings and
the templates required for the code-generation for every

platform has to be specified. These templates and bindings
use the pragmatics to interpret the CPN model and create
the corresponding implementation code. The PetriCode
tool already has predefined bindings for Java, Clojure and
Groovy. A sample CPN model for a sensor looks like the
one in figure 3. This is the top most level of the layered
CPN model, defining a sensor node and is annotated with
pragmatics <<Principal()>> and <<Channel()>>. The
top most level depicts the layered sensor model with a radio
component at the lowest layer (OSI layering), connecting
the sensor with the communication channel. Above it, is
the Medium Access Control (MAC) layer which handles
all the communication through and to the sensor. The
application and network part are combined in this model
which represents application support and routing decision
support protocols. A level lower where the module is defined
in detail, inside the Medium Access Control (MAC) module
we can see <<Service()>> pragmatic as shown in figure
4. The figure depicts two services being handled in the
MAC module: radio packet handler and upper layer packet
handler. The module also consists of a variable declaration
SingleSlotBuffer used by the upper layer packet handler
service.

Similar to relating programming concepts between
different platforms it is a challenge to relate pragmatics
to different code structures across languages. A view of
the differences in concepts between the initial pragmatics
annotations and platform-specific languages is shown in
figure 5. The nesC code structure consists of components,
configurations, modules and interfaces. Whereas C++
consists of objects, classes, methods and abstract classes.
Initially, we map <<Principal()>> pragmatic to objects
in C++ and components in nesC. At the lower level,
nesC contains of commands and events (synchronous and
asynchronous) and C++ consists of methods. We map
the <<Service()>> pragmatic to commands and events
in nesC, and to methods in C++. PetriCode already
consists of Java templates and bindings. We need to create
new bindings and templates for C++ and nesC, adhering
to their implementation rules. An example C++ code
generated from the CPN model defined in figure 3 is shown
in listing 1. For this generation, the binding used is shown
in listing 2 and the template example for ”Declaration”
is shown in listing 3. An example nesC code (skeleton)
generated for the same CPN model is shown in listing

Wireless Channel
<<Channel()>>

WirelessChannel

Radio
<<Principal()>>

Radio

MAC
<<Principal()>>

MAC

Application and Network
<<Principal()>>

AppNetwork

MSend

UNIT

CSend

UNIT

CReceive

UNIT

MReceive

UNIT

AppSend

UNIT

AppReceive

UNIT

AppNetwork

MAC

Radio

WirelessChannel

Figure 3: CPN model of a Sensor



HandleRadioPacket
<<Service()>>

HandleRadioPacket

SingleSlotBuffer
<<State>>

UNIT

AppSend

In
UNIT

AppReceive

Out
UNIT

RadioSend

Out
UNIT

RadioReceive

In
UNIT

In Out

Out In

HandleUpperPacket
<<Service()>>

HandleUpperPacketHandleUpperPacket

HandleRadioPacket

Figure 4: CPN model of the Medium Access Layer

4. The ”Declaration” binding is used to generate code for
the pragmatic <<State>> which can be seen in figure 4.
To obtain the nesC code, we plan to use asynchronous
commands and events. An important constituent of a
program code block is its control flow. Given the CPN’s
lack of enforcing a structure particularly to enforce control
flow, PetriCode defines certain pragmatics and control flow
structure for the <<Service()>> level [14]. Thus at the
service level, we need to follow a particular structure that
defines the control-flow while transforming the model from
an initial CPN model to an annotated PetriCode CPN
model. In the current work, we are in the process of creating
code-generation for simulation and hardware platforms.
Currently an abstract model of the protocol has been created
and a C++ conversion (skeleton code) is generated as an
example.

Figure 5: Concept mapping from Pragmatics to
nesC and C++

Listing 1: C++ source code file
//Mac c++ file
#include <BaseMacLayer.cc>
#include "MAC.h"

Object SingleSlotBuffer;
void MAC:: HandleUpperPacket () {

/*[]*/ /*[]*/
/*vars: [__TOKEN__ :]*/
Object __TOKEN__ = null;

}
void MAC:: HandleRadioPacket () {

/*[]*/ /*[]*/
/*vars: [__TOKEN__ :]*/
Object __TOKEN__ = null;

}

Listing 2: Template Bindings file
//C++. bindings
principal(pragmatic: ’principal ’,

template: "./cTmpl/mainClass.tmpl")
service(pragmatic: ’service ’,

template: "./cTmpl/externalMethod.tmpl")
DECLARATIONS(pragmatic: ’_-DECLARATIONS -_’,

template: ’./cTmpl/__DECLARATIONS__.tmpl’)

Listing 3: Template file for declarations binding
// __DECLARATIONS__.tmpl
/*vars: ${vars}*/
<%vars.each{%>
<%if( it != ’[]’ && it != ’msg’){%> Object ${it} = null;
<%}}%>

Listing 4: nesC implementation code
//MAC Component
module MAC{}
implementation {
Object SingleSlotBuffer;

event void HandleUpperPacket () {
/*[]*/ /*[]*/ /*vars: [__TOKEN__]*/
Object __TOKEN__ = null;

}
event void HandleRadioPacket () {

/*[]*/ /*[]*/ /*vars: [__TOKEN__]*/
Object __TOKEN__ = null;
}

}

4.1 Current Challenges
The important challenges in the current project using

PetriCode for code-generation for multiple platforms are
listed below:

1. Finding proper abstractions and abstraction level for
the platform-independent models.

2. PetriCode assumes a certain control-flow model in
the models. Even though PetriCode has been used
to generate code for languages representing different
programming paradigms, it may not be entirely trivial
to adapt to target platforms and simulators for the
embedded domain.

3. Making code-generation as complete as possible with
regards to being able to generate most or any protocol
with little or no need to create new pragmatics and
templates for various target platforms.

5. OUTLOOK
In this article, we have proposed an MDSE approach

for designing protocols for WSN and WSAN applications.
We carry out high-level abstract modeling in feature
rich CPN Tools which also allows for initial verification
and simulation unlike other existing tools. We further
provide the opportunity to also perform simulation on
full-fledged network simulators that focus specifically on
network simulations and have been developed over the years
to incorporate various wireless features. Thus, initially
we extend PetriCode to provide code generation for the
network simulator MiXiM and sensor network platform
TinyOS in nesC language. The extensions have been
partly completed and the work is in progress. We have
generated initial skeleton code for C++ and nesC. Given
the model of the PetriCode tool, it can also be extended
towards providing conversions to other platforms as well
as model-checking tools for further verification, essentially
probabilistic verification considering the complex nature of
wireless channels involved. We can also easily extend to
obtain possible code generation to other prominent sensor
network platforms namely ContikiOS as well, which is based
on the C language. As a case study, we plan to design
the GinMAC protocol according to its specifications and
generate implementation code.
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