An Approach to Semi-Automatic Code
Generation for the TinyOS Platform

using Coloured Petri Nets
Master’s Thesis

Vegard Veiset
Software Engineering
University of Bergen & Bergen University College
Norway

=

HOGSKOLEN | BERGEN

Supervised by
Lars M. Kristensen
Bergen University College

May 2013

Abstract

TinyOS is a widely used platform for the development of network embedded
systems such as distributed sensor networks, targeting low-powered wireless
devices. We present a software engineering approach where Coloured Petri Net
(CPN) models are used as the starting point for developing protocol software for
the TinyOS platform. The approach consists of a five step refinement process
taking a platform-independent CPN model and gradually refining it to match
the structure of the target platform, ending up with a refined model that enables
automatic code generation. We have used a case study of the IETF Roll Routing
protocol to evaluate our approach.

1

Contents

Introduction

1.1 Coloured Petri Nets and Code Generation
1.2 Model Refinement
1.3 Thesis Goal and Results
1.4 Thesis Outline

Coloured Petri Nets and the Roll Protocol

2.1 Roll protocol
2.1.1 Overview
2.2 The CPN Roll Protocol Model
2.2.1 Roll Protocol Module
2.2.2 Network module

The nesC Programming Language and the TinyOS Platform

3.1 The nesC Programming Language
3.1.1 Overview
3.1.2 Type Declarations
3.1.3 Program Control-flow
3.1.4 Imterfaces
3.1.5 Wiring and Configurations
3.2 The TinyOS Platform
321 APIs
3.2.2 TOSThreads
323 TOSSIM

CPN Model Refinements

4.1 Model Refinement Overview
4.2 Step 1: Component Architecture.
4.3 Step 2: Resolving Interface Conflicts
4.4 Step 3: Component and Interface Signatures
4.5 Step 4: Component Classification
4.6 Step 5: Internal Behaviour

1l

=N N

23
23
23
24
25
27
28
29
29
31
32

4.7 DIScussion

Code Generation

5.1 The Code Generator

5.2 TinyOS Application Structure
5.2.1 Headerfile.
5.2.2 Imterfaces
5.2.3 Components
524 Wiring

5.3 Behaviour
5.3.1 Method Invocation Pattern
5.3.2 Assign Variable Pattern
5.3.3 Interface Invoke Pattern
5.3.4 Variable Usage Pattern
5.3.5 Interface Return Pattern

Application to Roll

6.1 Implementing Network Handlers
6.1.1 The Dispatcher Component
6.1.2 The NetSend Component

6.2 Implement interfaces for Timed Tasks

6.3 Porting functions

6.4 TOSSIM

Conclusions and Future Work

7.1 Model Refinement Process

7.2 Code Generation

7.3 Future Work
7.3.1 Automated Testing and Analysis
7.3.2 Improving the Code Generator

Installing TinyOS and running nesC applications
A.1 Installing TinyOS
A.2 Running nesC applications

Roll Protocol nesC example

C Generated Code

Using the Code Generator

v

53
53
54
54
57
o8
59
60
62
63
63
64
64

67
67
67
68
70
71
72

75
76
76
7
7
78

85
85
86

87

93

103

Chapter 1

Introduction

Models of software can give insight into an idea, a concept or a design. It can
help us to get a better understanding of a software system and highlight details
that were previously unnoticed. When a software system has been represented
as a model, we would like to leverage the time invested in creating the model
to automatically generate implementation code for a concrete platform. By
doing this, we can eliminate the number of human errors that would occur if the
implementation had to be done manually, as well as save time that has already
been invested in creating the model.

One drawback of implementing an abstract model instead of a concrete implemen-
tation of a software system, is that we do not have an implementation that can
be executed on the target platform. In this thesis, we look closer at how we can
use an abstract model to generate implementation code for a concrete platform,
and which refinements are needed to obtain a model from which we can generate
platform specific code.

Network protocols are concurrent, non-deterministic, and as a result they are
often complex. When implementing protocols, rigorous testing is needed to ensure
the correctness of the protocol implementation. By specifying the protocol using
abstract models, we can simulate the behaviour and eliminate a number of errors
that we might not have discovered otherwise. From this perspective, we investigate
in this thesis the Roll Protocol[10], a network protocol specified by the Internet
Engineering Task Force (IETF). The Roll Protocol (RPL) is an IPV6 routing
protocol for low-power and lossy networks, and is well suited for nodes in wireless
sensor networks. We have chosen to use the TinyOS platform as a case study for
code generation. TinyOS is a platform targeting low powered devices.

The specific focus of this thesis is on how we can refine and use pragmatics[18]
to annotate Coloured Petri Net[11] (CPN) network protocol models with addi-
tional information that will enable us to generate nesC code for the TinyOS
platform[15].

1.1 Coloured Petri Nets and Code Generation

Coloured Petri Nets (CPN) offer a way of creating abstract models that can be
used to represent concurrency, non-deterministic behaviour and communication in
software systems. Because of the abstract nature of CPN models, deriving code
automatically from the models is challenging due to the gap between an abstract
and platform independent model and code that can be executed on a specific
platform. CPN Tools is a tool for modelling concurrent and non-deterministic
behaviour and analyzing CPN models|11].

A CPN model of a software system can represent complex behaviour which it
can be challenging to reason about. We can simulate the behaviour and make
reasonable estimates about the behaviour of a model and generate code based on
that. This has been done in the simulation based code generation approach of
[13, 17]. Another approach is to use structure-based automatic code generation|8|
based on Process-Partitioned CPNs, an extension of CPN. There are projects that
generate CPN models based on software implementations. An example of this is
the nesc2cpn[7] program that takes a TinyOS application and generates a CPN
model that is used for estimating the power consumption of the application.

1.2 Model Refinement

Generic abstract models are hard to relate to concrete implementations for a
target platform. By adding details and restructuring (refining) the generic model,
we can adapt it to match the target platform, and this enables us to relate the
abstract model to the specific platform.

The refinement of the CPN model in this thesis is largely based on the use of
pragmatics[18] to annotate the model with additional explicit information. The
reader is introduced to the five steps of CPN model refinement for TinyOS network
protocol applications that we have created.

We have implemented a CPN model representation of the Roll Protocol. This
implementation was created prior to having knowledge about the target platform.
This is done to keep the original model as platform-independent as possible.
Having a platform-independent model increases our confidence in that the CPN

model refinement steps we have created are generic and can be applied for other
network protocols.

1.3 Thesis Goal and Results

The goal of this thesis is to further explore the possibilities of getting from an
abstract CPN model into implementation code for a target platform, while ensuring
readability of the generated code. The TinyOS platform will be the primary
frame of reference to demonstrate the applicability of the research conducted in
this thesis. We use a case study of the Roll Protocol[10], a protocol for routing
over low-powered and lossy networks, to explore the characteristics of structure-
based automatic code generation. The thesis investigates several related research
questions, and the research questions are investigated by means of software
prototypes. The research questions are as follows:

e How can we transform CPN models into platform specific code for the
TinyOS platform?

e How do we refine the CPN model sufficiently to use it for code generation?
e Are pragmatics suitable for the model refinement process?
e What general steps are required in the refinement process?

Figure 1.1 shows the process of going from a specification to implementation
of executable code. The Roll Protocol specification is modelled using CPNs.
Using CPN Tools, we are able to simulate and verify the behaviour of the model.
To generate code for the target platform, the model-to-code transformation
(code generator) requires a CPN model sufficiently refined, and annotated with
pragmatics giving additional detail about the target platform.

The first step is to create a CPN model representing the behaviour of the Roll
Protocol. The second step is to refine the CPN model by adding more detail to it,
and this is done by annotating the CPN model and by changing the structure
of the model to better match the target platform. We refine the model to the
point where we have got enough detail to be able to generate platform specific
code from it. We use Access/CPN]21] to load CPN models created with CPN
Tools.

By going through the process of refining the CPN Roll Protocol model, we have
derived five refinement steps that can be used to translate generic CPN network
protocol models into CPN models from which we can generate TinyOS applications.
We show how we are able to generate the application structure and the outline of
the behaviour of TinyOS commands and events. The source code generated by

Roll protocol
specification

Roll prototype
implementation

refinement

o Platform Roll
dependent libraries implementation

Roll spec model

CPN nesC

Verification ———-7— ™ | Code generation | —c5ge— ™

Simulation Access / CPN
CPN Tools Model-to-Code Tiny0S
Transformation Implementation

Figure 1.1: Research approach using prototypes

the code generator does, however, require some minor manual implementation to
be runnable. Hence, what we have developed is a semi-automatic approach to
code generation for the TinyOS platform.

1.4 Thesis Outline

The reader is assumed to have basic knowledge of the C programming language,
the Standard ML programming language, and know the core concepts of Petri
Nets. Below we briefly summarize the content of the individual chapters that
constitute this thesis.

Chapter 2 - Coloured Petri Nets and the Roll Protocol introduces CPN
Tools, and how it has been used for modelling the Roll Protocol[10]. By
describing the process of creating the CPN Roll Protocol model, we intro-
duce the concepts needed to understand Coloured Petri Nets and the Roll
Protocol.

Chapter 3 - The nesC Programming Language and the TinyOS Platform

introduces the key concepts of the nesC programming language and the
TinyOS platform. To introduce the nesC programming language and TinyOS
platform, we show how selected parts of the Roll Protocol can be imple-
mented in nesC.

Chapter 4 - CPN Model Refinement describes how the CPN Roll Protocol
model has been refined. The refinement has been done by adding TinyOS

4

platform specific details to the model. The reader will be given an overview
and motivation for each of the steps in the refinement.

Chapter 5 - Code Generation introduces the technical details on how to gen-
erate code for the TinyOS platform based on a CPN model refined according
to the steps introduced in Chapter 4. We introduce how the code generator
works, and the result of each step in the code generation.

Chapter 6 - Application to Roll shows the necessary manual steps needed to
go from the generated code and to a running network protocol application.

Chapter 7 - Conclusions and Future Work discusses the results of the re-
finement, the generated code and the process of going from an abstract
CPN model to a concrete implementation of a network protocol for the
TinyOS platform. We outline possible extensions and improvement to our
code generator, and provide direction for future work.

The source code for the code generator, related documentation, revisions of the
CPN models during the refinement process, binaries, and code samples can be
found online at http://veiset.org/master/.

http://veiset.org/master/

Chapter 2

Coloured Petri Nets and the Roll
Protocol

This chapter introduces core concept of Coloured Petri Nets, wireless sensor
networks, and the Roll Protocol. We use a CPN model representation of the Roll
Protocol to introduce the reader to the operation of the Roll Protocol. When
introducing the CPN model of the Roll Protocol, we introduce the core concepts
needed to understand how CPNs works, and how CPN Tools is used in the
development of abstract and platform independent models.

2.1 Roll protocol

The Roll Protocol[10], also know as RPL, is an IPv6 routing protocol for low-
power and lossy networks. Low-power and lossy networks are networks where
high rates of packet loss and low transfer rates are expected[1]. Lossy networks
often constitute environments where the processing power, memory and power
consumptions have constraints.

We find lossy networks in areas such as distributed sensor networks. Sensor
networks can be used in hostile environments where it would be hard to install
and maintain physical wiring between nodes. An example of this is the Golden
Gate Bridge safety high-speed accelerometers[12]. Another appliance of sensor
networks are in data center facilities. Data centers use a lot of power on cooling
and by attaching sensor nodes to the machine racks it has been shown|[16] to be
possible to dynamically adapt the cooling needed to reduce the overall power
consumption of the data center.

The nodes in the network might not always have the correct, and most up-to-
date information about the network. This is because constantly updating the

7

routing information is expensive both in terms of network load and node resource
consumption.

An instance of the Roll Routing Protocol (RPL) organizes nodes in a network
as a directed acyclic graph, and consist of one or more root nodes which are
acting as sinks for the network. The Roll Protocol discovers links and selects
peers sparingly.

2.1.1 Overview

The Roll routing protocol uses Destination-Oriented Directed Acyclic Graphs
(DODAGSs[10]) for building network routes consisting of nodes (devices), and
uses IPV6 messages[9] (ICMPv6) to communicate between the devices. There
are five different types of control messages that are defined by the Roll Protocol
specification[10]. These are used for network discovery, propagating information,
sending data, inconsistency checks, and packet encryption.

An instance of the routing protocol consist of one or more Destination-Oriented
Directed Acyclic Graphs. A DODAG typically only has one root node, and in
the case that there are multiple root nodes defined, it is assumed that they all
are connected to a common backbone network. A DODAG is organized as a
directed graph consisting of children and parent nodes. A child typically only has
one parent, while a parent-node can have multiple children. The traffic flow in a
DODAG can go in two directions: unicasted upwards in the graph from child to
parent (towards the root node), or downwards by being broadcasted to all child
nodes.

A DODAG is uniquely identified by the combination of a DODAGID (which is
a unique number identifying the DODAG root-node), a RPLInstanceID (which
is an unique ID identifying the network), and a DODAG VersionNumber. The
DODAG VersionNumber is the current iteration number of the DODAG. The
DODAG contains a finite number of nodes that have a rank associated with
them.

The DODAGID, RPLInstancelD, DODAG VersionNumber and the rank of a node
makes up the RPL identifiers. The RPL identifiers are used to identify, manage,
and maintain a topology.

Figure 2.1 shows how a network topology can be represented as a DODAG.
The nodes in the network will attempt to find the best suited parent based
on an objective function. The Network_as_DODAG (Figure 2.1 - middle) shows
the route of the packets going towards the root node. The objective function
describes how the nodes should choose their parents based on attributes such
rank, DODAG VersionNumber and DISTANCE.

Physical Network Network as DODAG Network as DODAG

(a possible outcome) (with ranks shown)

Figure 2.1: Physical network topology represented as a DODAG

Figure 2.2 shows how nodes in a network can exchange packets to join and form a
DODAG. The scenario uses the network in Figure 2.1, with one root node (rootl)
and five non-root nodes (node 2-6). The root-node (rootl) is a preconfigured node
in the network that is acting as a sink for a common network. The left side of the
Figure 2.2 shows the exchange of network packets, while the right side shows the
current DODAG representation of the connected nodes.

The nodes will send discovery requests (DIS in Figure 2.2) with their current
rank and DODAG VersionNumber in attempt to find a DODAG to join. When
a node is part of an RPL instance (has joined a DODAG) it will respond to
incoming discovery requests with a discovery response (DIO). The node will then,
based on the incoming responses, pick the most suited parent according to an
objective function. The objective function zero[20] (OF0) is used to calculate
the most favourable parent, and will always favour the parent with the highest
DODAG VersionNumber. The OF0 will pick the one with the lowest rank within
that version of the DODAG. When a node gets multiple responses with suited
parents, the node will choose the parent as described by the objective function.
The node will evaluate the response regardless of whether it already has a parent or
not, and choose the optimal one. This is illustrated in Figure 2.2 by nodeb6.

Requests (Scenario) Current DODAG

((root1) ((nodez) (node3) [nodea) [nodges) (nodes)
pIS & DIS

- » rank=1 2 3 4
DIO(1,1)
- »
DIS DIS
- * 0]
DIO(1,1)

3

-

pIO(2,1) JDI0(2,1)
o

DIS DIS A DIS DIS
O

4
A J

_ DIS &
DIO0(3,1)
o

DIS

A
A
o

DIO0(2,1)

.
)
OO
e ® © ©
e 0 ©

Y
e
@ ®

Figure 2.2: Nodes forming a new instance of a DODAG
2.2 The CPN Roll Protocol Model

We create CPN models by using transition, places, arcs and inscriptions. Transi-
tions are used to add and remove tokes from places, and places contains the data.
The arcs describes the data types and constraints on the data that will be added
or removed from places. Inscriptions are used to define functions and expressions
(written in CPN ML) that are evaluated to a multiset or a single element. Our
model consists of a hierarchy of modules.

The CPN Roll model is based on the Roll Protocol as specified in RFC6550(10].
The model specifies how nodes in a network obtain configuration parameters
(DODAG VersionNumber and Rank) from neighbouring nodes and how the nodes
choose their parents based on that information. In the model, the nodes choose
their parents according to the ObjectiveFunctionZero[20]. Furthermore, the CPN
model allows nodes to discover that their parents have disconnected. This is
done by sending destination advertisement (DAO) packets explicitly asking for
acknowledgements. Our model does not include the consistency checks and
security aspects of RFC6550.

The top-level of the CPN-model, is shown in Figure 2.3. We are using substitution
transitions to structure large models into smaller parts. The substitution transition
RollProtocol in Figure 2.3 is handling the logic of the Roll Protocol, while the
substitution transition LinkLayer represents the network link layer of our model.

10

A hierarchical CPN model can always be represented as a flat model, but for
readability and maintainability we have chosen to organize our model in an
hierarchy. We have two main modules, one module representing the network and
one representing the Roll Protocol. To get places to connect and interact with
submodules (substitution transitions) we use socket places. Socket places can be
inputs, outputs or both and are connected to substitution transitions.

Roll Protocol

RPL Protocol

NodexPacket NodexPacket

Link Layer

[Cink Layer]
Figure 2.3: Overview of the CPN-Roll model

Figure 2.4 shows the hierarchy of our model. The hierarchy consist of eight
modules. The main module, Main, containing two submodules, one for the link
layer and one for the protocol as shown in Figure 2.3. The RollProtocol module
contains the behaviour of the routing protocol and has four submodules containing
logic for: discovering and joining (DISDIO), sending destination advertisements
(DAO), handling acknowledgements (DAOACK), and initial joining and local
configuration. The module LinkLayer representing the link layer, is responsible for
transmitting data between the nodes in the Roll Protocol. The link layer has a
submodule that contains logic for changing the network topology.

Link Layer

Topology Change)

)
)
)
)

Startup and Timeout

Figure 2.4: CPN-Roll Protocol Module Hierarchy

11

2.2.1 Roll Protocol Module

The Roll Protocol module consists of four main modules: Discovering and joining
a DODAG (DIS DIO), sending packets containing payload (DAO), acknowledging
packets containing payloads (DAOACK), and node configuration and behaviour
(Startup_and_Timeout).

Figure 2.5 shows the four substitution transitions that make up the CPN Roll
Protocol module. The place DodagState represents the information each node
currently has about the DODAG and in which state the node is in. LinkToRoll is
the place for incoming packets from the link layer, and RollToLink are the packets
being sent to the link layer, i.e, outgoing packets from the node.

1°(1,0,0,0,INITROOT)++
1°(2,0,0,0,INITNODE)++
1°(3,0,0,0,INITNODE)++
1'(4,0,0,0,INITNODE)++
Dodag 1°(5,0,0,0,INITNODE)++
State 1°(6,0,0,0,INITNODE)
A NetNode

»

-~ P DIS DIO
RN DIS DIO
L|r;{ko;ll'> » DAO @
gl /
[DAO] NodexPacket

NodexPacket

N > DAOACK
DAOACK

_ q Startup and
g Timeout

[Startup and Timeout]
Figure 2.5: CPN-Roll Protocol Module

The CPN model describes three main active states that a node can be in:

e JOINING - Trying to find and connect to an existing DODAG

e JOINED - Currently connected to a DODAG

e WAITING - Connected to a DODAG, and waiting for an acknowledgement
We have two types of nodes: root nodes and non-root nodes. Both non-root

nodes and root-nodes will start in a booting-state, INI'TNODE and INITROOT

12

N

N

respectively. A root node will not attempt to discover or rejoin a DODAG as
the root node is a preconfigured entity in the network and will be in the state
ROOTJOINED until disconnected. Being a root-node allows the node to increase
the DODAG VersionNumber. Non-root nodes will start in the state of JOINING
and this will enable them to probe the network to find information about the
DODAG, and thus allowing them to join.

We have created an enumerated colour set STATE (Figure 2.6) listing the states
that the nodes can be in. The with keyword is used to specify a list of allowed
elements that can be used as values in the colour set STATE. The STATE colour set
is defined as follows:

colset STATE = with INITROOT | INITNODE | ROOTJOINED
| JOINED | JOINING | WAITING;

Figure 2.6: CPN colour set representing a state in the Roll Protocol

Furthermore, Figure 2.7 shows the defined colour sets for nodes, rank of nodes,
and the colour set for the DODAG version number.

colset Nodes int with O..N;
colset Rank = int;
colset DodagVerNum = int;

Figure 2.7: CPN color sets for Node, Rank and DodagVersionNumber

A node in our model is represented as a NetNode (see below) and has a unique ID.
The NetNode is a product of five colsets, in order, representing: An identification
number (Nodes), a rank (Rank), a version number (DodagVerNum), a parent
(Nodes) and a state (STATE).

colset NetNode = product Nodes * Rank * DodagVerNum * Nodes * STATE;

In addition to the STATE color set, we have created a color set for packet types
which is a union of the packet types of the Roll Protocol. Using pattern matching
in arc expressions allows us to enable transitions only when nodes are in certain
states and/or receiving specific types of packets.

We have defined a color set Packet to be a union of a destination and a packet type.
The packet type is a representation of each of the different types of packets we
have chosen to include in our CPN model: DIS, DIO, DAO and DAO-ACK.

The Packet colour set (Line 5, Fig. 2.8) contains information about the packet
and the destination. The destination can either be a unicast to a single neighbour

13

(DEST(n)) or a multicast to all the neighbours (DEST(ALL)). The Nodes colour set
contains a single ID for a node in the network, and in the colour set NodexPacket
this represents the source node of the packet.

union DIS

+ DAO:DAOpack

+ DAOACK:DAOACKpack

+ DIO:DIOpack;
colset Packet = product Dest * PacketType;
colset Dest = union ALL + DEST:Nodes;

colset PacketType

Figure 2.8: CPN color set for a generic RPL network packet

The DIS packet contains no extra information relevant to the Roll specification
and is a constant. DIO and DAO-ACK packets contains information about the
rank and version number of the sender. The DAO packets (DAOpack) in addition
to this also contains Data and a option field Options. The option field is used to
inform the receiver whether it should respond with a DOA-ACK or not.

colset DIOpack = product Rank * DodagVerNum;
colset DAOpack = product Rank * DodagVerNum * Data * Options;
colset DAOACKpack = product Rank * DodagVerNum;

Figure 2.9: CPN color sets for the different RPL packets

We are using a colour set of type NodexPacket to describe packets going over the
network. NodexPacket is a product of the colour sets Nodes and Packet. And is
defined as:

colset NodexPacket = product Nodes * Packet;

14

The DIS DIO module

The DIS DIO module contains logic for obtaining information about a DODAG as
well as the logic for joining a DODAG based on an objective function.

The node wanting to join the network (state=JOINING) will send a DODAG
Information Solicitation (DIS) to obtain information about nearby DODAG
instances. This is done by probing the neighbouring nodes in the physical network.
When a node is part of a DODAG (state=JOINED) and receives a DIS, the node
will reply with a DODAG Information Object (DIO). This allows new nodes to
discover existing DODAGs in a network, along with obtaining information and
configuration parameters of the DODAG.

In Figure 2.10 we see that when a node is in the state JOINING the transition
SendDISReq will be enabled, and the node will be able to send out a DIS request
to the network via the place RollToLink. The packet will then be broadcast on the
link layer to all the neighbouring nodes. Incoming packets will be on the place
Link To Roll. We can see from the SendDIOResponse transition in Figure 2.10 that
incoming DIS packet will trigger nodes in the state of JOINED or ROOTJOINED
to reply with a DIO packet. We are using a transition guard to make the state
of the node a requirement, and we use arc inscriptions to tell that the incoming
packet has to be of type DIS.

Dodag \ (n, rank, ver, parent, JOINING)
E;D‘ Send DIS Req
— NetNode

A

\ 4

discoveryReq(n)
(n2, rank, ver, parent, state) | [objectiveFunction(
n, n2, rank, ver,

rrank, rver, parent,

(n2, rank, ver, parent, state)
VY | state)

Receive Roll To

DIO Response

NodexPacket

(n, (DEST n2, DIO(rrank,rver))) (n2, (DEST(n),
DIO(rank,ver)))
Link To (n, (DEST n2, DIS)) Send DIO

Roll

»
| Response

[state = JOINED orelse state = ROOTJ OINED]
NodexPacket

Figure 2.10: The DIS DIO CPN Module

15

The node receiving the DIS packet will respond with a DIO(rank,ver) containing
the nodes rank and version of a DODAG. When the initial node receives a DIO
response, it will evaluate the response against the information it already has and
judge if the incoming DIO contains a better suited parent than the current. When
we examine Figure 2.10 we see that the state of a node does not matter when
receiving a DIO response (ReceiveDIOResponse). The reason for this is that DIO
packets should be evaluated even though a node already has JOINED a DODAG.
This is done so the node can evaluate the incoming DI/0O and check if it contains
information that can be used to select a more optimal parent. The optimal parent
will be chosen according to an objective function. In our CPN model we have
implemented a simplified version of ObjectiveFunctionZero[20] that only takes
rank and DODAG VersionNumber into consideration. The implementation of this
function is shown in Figure 2.11.

fun objectiveFunction(n, n2, rank, ver, rrank, rver, parent, state) =
if inconsistency(ver,rver) orelse noDodag(parent,rank,rrank,rver)
then 1‘(n2, 0, 0, 0, JOINING)
else
if ((rrank+1 < rank orelse rank=0) andalso not(rrank=0))
then 1¢‘(n2,rrank+1,rver,n, JOINED)
else 1¢(n2,rank,ver, parent, JOINED);

Figure 2.11: CPN-ML source code for Objective Function Zero

The objective function zero will check if the current information of the DODAG
is outdated (i.e: an inconsistency is discovered), check if that the reply contains a
valid information about the DODAG, and finally check if the information received
is better suited as a parent than the current parent is. Based on these criteria,
the objective function will either update the current parent or set the node in a
JOINING state if an inconsistency was discovered.

16

The DAO module

To discover changes in the network topology and loops in the DODAG, Destination
Advertisement Object (DAQ) are used. These are used to transmit and spread
information upwards along the directed graph (DODAG). This is done by sending
a unicast message to the parent of the node. The sender can explicitly require that
the receiver should respond with an acknowledgement (DAO-ACK) confirming
that the DAO was received.

Figure 2.12 shows the DAO CPN module. Our CPN model has support for sending
both DAO requests with and without requests for an acknowledgement. This is
done by having a flag in the DAO packet, as shown by the arcs going to the socket
place Roll To Link. The DAO packet has two options: 1 for acknowledgement
and 0 for no acknowledgement. The DAO module will also process and discard
incoming DAO requests without the acknowledgement flag set.

[config]

sendDAO
Dodag config Enable DAO
Send DAO |q—Pp(Ethabe
State /™ (n, rank, ver, parent, JOINED) Transmission
-
A

ConfigParam

(n, (DEST(parent),
(n2, rank, ver,| |(n2, rank, ver, DAO(rank, ver, "data", 0)))

parent, state) parent, state)

(n, rank, ver,
parent, WAITING)

(n, rank, ver,
parent, JOINED)

[options=0] ¢y [config 4 \ 4
DAO without Send DAO Roll To
ACK request request ack | (n, (DEST(parent), Link
DAO(rank, ver,

"data", 1))) NodexPacket

(n,
(DEST n2,
DAO(rank,rver,data, options)

sendDAOwithACK

Enable DAO
Transmission
With ACK req

ConfigParam
NodexPacket

Figure 2.12: The DAO CPN Module

17

The DAOACK module

Figure 2.13 shows the DAOACK CPN module. When a DAO-ACK is not received
within a reasonable time-frame, the sender should assume that the link is dead
and time out. This will put the node in a state where it wants to rejoin the
network (state=JOINING). In our model this is done by having a place within the
Startup and Timeout module (see Figure 2.14) that will be enabled if the node is in
the state WAITING. Activating the transition will result in the node going back to
the JOINING state. When a node receives a DAO-ACK packet before timing out,
it will evaluate the packet in the same manner as with a DIO response, evaluating
the response according to the objective function.

(n2, rank, ver, parent, state)

objectiveFunction(
n, n2, rank, ver,
rrank, rver, parent, state)

(n2, rank, ver,
parent, WAITING)

Receive Ack

N NodexPacket

(n2,
(DEST(n),
DAOACK(rank,ver)
)

(n, (DEST n2, DAOACK(rrank,rver)))

(n, (DEST n2, DAO(rrank,rver,data,1))) Send DIO
Response

NodexPacket

Figure 2.13: The DAOACK CPN Module

18

The Startup and Timeout module

The node behaviour submodule contains behaviour of the node that is not directly
related to sending and receiving packets. The submodule includes the booting
sequence of nodes shown as the two transitions Root JOIN and Node JOIN in
Figure 2.14. After a regular node boots (state=INITNODE), it will try to find a
suitable DODAG instance to join, and will be in the state JOINING. The root nodes
will go from a state of INITROOT to the state ROOTJOINED with some preconfigured
values for DODAG VersionNumber and rank. In Figure 2.14, we have set the rank
and version to be initialized to 1 and the parent to 0, indicating that the root
node has no parent. This pre-configuration is shown by the arc inscription (n,
1, 1, 0, ROOTJOINED) between the Root JOIN transition and the Dodag State
place.

ackTimeout [config]
Enable config ’
Timeout
ConfigParam
(n, rank, ver, parent, JOINING) | [(n, rank, ver, parent, WAITING)
[config]
(n,1,1,0, ROOTJOINED)k Doda (n,rank,ver,parent, ROOTJOINED) | Increase
Root JOIN |4 ol Gt DODAG
B (n, 0, 0, 0, INITROOT) - (n,rank,ver+1,parent, ROOTJOINED) Version

NetNode

config

dodaglIncrease
Enable
DODAG
Increase

ConfigParam

(n, 0, 0, 0, INITNODE)| |(n, 0, 0, 0, JOINING)

Node JOIN

[config]

Link To (n, (DEST n2, packettype))

.)
Roll Discard

NodexPacket
config

disregard
Enable
Disregard

ConfigParam

Figure 2.14: The Startup and Timeout CPN Module

The submodule Startup and Timeout has logic that allows the DODAG roots to
increase the DODAG VersionNumber. A version increase will be discovered by
nodes sending DAO packets with acknowledgement requests (DAO-ACK). This
will allow the DODAG to be rebuilt over time.

19

2.2.2 Network module

The network representation is divided into two parts. One part that represent
the link layer transmission, and one part that simulates changes in the physical
topology, creating and deleting links between the nodes. The TopologyChange
module in our CPN model is largely based on the one used in the DYMO CPN
model[14].

Figure 2.15 shows our CPN implementation of the link layer. The place Phys-
icalTopology contains the nodes and lists of their neighbours in the network.
RollToLink is the place of the incoming packets from nodes that should be sent
over the network, and LinkToRoll is the destination of the packet. The transition
LinkLayer represents the transmission of packets over the link layer.

sendPacket(adj,n,packet)

n,packet
(n.p) Link Layer P

NodexPacket NodexPacket

(n, adj)

topologyScenario
Physical

[(3,2,DOWN)]
Topology
Topology Change Change
Topology Topology Change TopologyChanges

Topology

Figure 2.15: CPN-Roll Network Model

Our model allows us to simulate sending packets over the link layer. A packet has
a packet type and a destination. The destination can be of two types. It can be a
broadcast to all the neighbours in the network, or a unicast to a single node. In our
protocol a broadcast is used when a node is probing the network for information
about nearby DODAGSs (broadcasting a DIS packet). A unicast is used by nodes
which are currently in a DODAG and want to send packets to their parenting
node (DAO) or respond to acknowledgement requests (DAO-ACK).

20

Figure 2.16 shows the different states a node can be in. The node will start in the
INIT state and after booting, the node will try to join (JOINING) a DODAG by
broadcasting DIS packets. When a DIO packet with information about a favourable
parent is received, the node will join the DODAG and be in the state JOINED.
Nodes in the JOINED state can send DAO with acknowledgement requests, putting
the node in a WAITING state. The node will then either timeout and try to rejoin
(JOINING), or receive an acknowledgement (DAOACK) and go back to the JOINED
state.

393ck req

DAOACK

Figure 2.16: State diagram for the Roll Protocol

21

22

Chapter 3

The nesC Programming
Language and the TinyOS
Platform

This chapter introduces the key concepts of the nesC programming language and
the TinyOS platform. To introduce nesC and TinyOS we show how selected
parts of the Roll Protocol can be implemented in nesC. Our aim is not to give
a complete introduction to nesC and TinyOS. The reader is referred to [2] for a
complete introduction to these technologies.

TinyOS is a specialized operating system that targets devices with very limited
hardware capabilities such as nodes in sensor networks. TinyOS is using a
programming language dialect of C named nesC which targets the development of
software systems with constraints on processing power and memory usage.

3.1 The nesC Programming Language

To compile software for the TinyOS platform, the nesC compiler is used. A
collection of nesC files are compiled by the nesC compiler into a single native C
file. This file is then compiled to binary code by a C compiler such as the GNU
Compiler Collection (GCC).

3.1.1 Overview

The nesC programming model consists of two main parts. A configuration file
and nesC components. A nesC component has information about which interfaces

23

it provides and uses. Interfacing in nesC is a way of structuring the software
architecture of an application. The purpose of the configuration file is to wire
(connect) together components by using these interfaces. There is no static or
dynamic linking between files and libraries in nesC. Everything is in the same
global namespace and are wired together by the configuration file.

Figure 3.1 shows the relationship between components in a simplified TinyOS
implementation of the Roll Protocol. The squares represent nesC components,
and the triangles represent interfaces. A triangle inside of a square is an interface
that the component is providing, while a triangle outside of a square represent
an interface that the component uses. In this model, we have four components.
MainC provides the Boot-interface used by the application as an entry point. The
RPLProtocolC component constitutes the main program and the DAOC and DIOC
components implement the processing of the network packets.

rovides| Boot

MainC

Figure 3.1: Simplified TinyOS implementation of the Roll Protocol

The DAOC and DIOC components are handling incoming packets of the Roll
Protocol. To be able to decide on what to do with the incoming packets, the
components need to know which state the node is in. In the CPN Roll Protocol
model (Figure 2.5) this information is stored in the CPN place DodagState. In
our TinyOS Roll Protocol implementation, this information is stored in the
RPLProtocolC component. The packet processing components (DIOC / DAOC)
use the NODE interface that RPLProtocolC provides to access information about
the current state, rank, parent, and DODAG VersionNumber of the node.

3.1.2 Type Declarations

To be able to make a TinyOS implementation of the Roll Protocol, we first need
to define the basic state type using nesC type definitions.

24

We can see from Figure 3.2 that nesC type declarations are very similar to that of
the C programming language. The wint is platform-dependent, as different hard-
ware uses different types of endians. nesC provides a set of platform-independent
types. Types prefixed with nx_ are big-endian values, while types prefixed with
nxle_ are little-endians.

typedef enum {
INITNODE = O, NODE = 1, JOINING = 2, JOINED = 3, WAITING = 4 ..;
} State;
typedef struct {
uint8_t id;
uint8_t rank;
uint8_t dodagN;
uint8_t parentld;
State state;
} NetNode;

Figure 3.2: Source code of DataTypes.h

When working with TinyOS applications, memory usage should be taken into
account. One way to save memory is by using enums. We should be careful not
to use larger integers than we have to, as sensor nodes often have very limited
physical memory available.

The header files are very similar to the C header files. The biggest difference is
that the nesC header files are global, meaning that if you have included a header
in one of your components, it will be included globally for all to use. This is
a direct result of how the nesC compiler works: all the nesC components are
compiled into a single C source file before being compiled into binary code. Even
though this is true, it is a good idea to always include the header file declaration
for clarity in the components that are using the custom type definitions.

3.1.3 Program Control-flow

Components communicate with split-phase events as the application is compiled
to binary code that typically is used by non-blocking hardware platforms. This
means that the signal that initialises an event completes immediately. When
the event is done processing the request, it sends a callback to the components
implementing the event-handler. This is implemented in nesC using the keywords
signal and event. To invoke a function from another component nesC uses the
keyword call. To attach an event-listener, the keyword event is used, and to
trigger an event, the keyword signal is used.

25

The RPLProtocolC component in 3.3 uses two interfaces (as illustrated by Fig-
ure 3.1): Boot, which is a standard TinyOS interface that will give a callback
when the device has booted, and RPLPacket (Line 5-6) which is a interface for
sending and receiving Roll packets. The RPLProtocolC component also provides a
simple interface (NODE, Line 3) for accessing the state of the node. The keyword
command defines a function which can have function parameters and return
attributes.

#include "DataTypes.h"
module RPLProtocolC {
provides interface NODE;
uses interface Boot;
uses interface RPLPacket as DAOQ;
uses interface RPLPacket as DIO;
}
implementation {
NetNode node = {
.id = 1, .rank = 0, .dodagN = O, .parentld = O, INITNODE
};
command State NODE.getState() { return node.state; }
command void NODE.setState(State state) { node.state = state; }

event void Boot.booted() {
// Example scenario
Packet packet = { .src = 2, .dest = 1, .packet = DAOpack };
call DAO.receive(packet);

}
event void DAO.send(Packet packet) { ... }
event void DIO.send(Packet packet) { ... }

Figure 3.3: Ported source code of RPLProtocolC component

We can see that the RPLProtocolC component listens to three events. The first
one is the booted() event (Line 15) triggered by the Boot interface. This will
be triggered when the TinyOS booting process is done. The next two events
are callbacks from the components handling DAO and DIO Roll packets. The
DAO.send(Packet packet) event (Line 20) will be triggered when the DAOC
component signals the send(packet) event. Similarly, the DIO.send(Packet
packet) event (Line 21) will be triggered by the DIOC component.

The RPLProtocolC component does not state which components the DAO and
DIO interfaces are connected to. This is done by using the concept of wiring and
is defined in the application configuration file.

26

3.1.4 Interfaces

An interface in nesC describes the relationship of functions and events between
two or more components. The interfaces works quite similar to the interfaces in
Java. A nesC interface describes events that could occur (and that should be
handled) and commands that are available for use.

To make the intent of an interface clearer it is possible to use the as keyword.
This keyword is required to be able to distinguish between components that use
the same interface. An example of this was shown in the RPLProtocolC component
where the RPLPacket interface is used twice:

uses interface RPLPacket as DAO;
uses interface RPLPacket as DIO;

Interfaces are defined in nesC source files. The interfaces describes a set of
commands (functions) and events that a component provides. Events are expected
callbacks and commands are functions that are available for other components
to use. Interfaces can be bidirectional, i.e, both provide commands and describe
events at the same time.

The RPLPacket interface (Figure 3.4) defines a function void receive (Packet
packet) that takes a packet as an argument and returns nothing (void), this
function will be implemented in the component providing the interface. The send
event defined in the interface will be signaled from the component providing the
RPLPacket interface. Components using the interface will have to implement the
event listener for the void send(packet packet) event, the component using
the interface will have access to use the function RPLPacket.receive(..) from
the component providing the interface.

#include "DataTypes.h"

interface RPLPacket {
command void receive(Packet packet);
event void send(Packet packet);

Figure 3.4: Source code of RPLPacket component

The NODE interface shown in Figure 3.5 does not use events. The function
getState () returns a value (State) instead of triggering a callback. This can
be done safely for functionality that do not require complex or time-consuming
operations.

27

1

3

1

#include "DataTypes.h"
interface NODE {
command State getState();
command void setState(State state);

Figure 3.5: Source code of NODE interface

3.1.5 Wiring and Configurations

Because of the nature of the devices running TinyOS it has to be easy to change
the implementation of a component. This is done by wiring together different
components. The wiring is done in the configuration file of the application. Wiring
is a concept used by nesC to connect components. Using a configuration file,
we are able to connect the different components by communicating through the
interfaces that are used and provided. Since interfaces can be bidirectional both
the components wired together are affected by the wiring.

The implementation from the configuration file RPLProtocolAppC.nc in Fig-
ure 3.6 shows how the components of the application (Figure 3.1) is wired together.
All the components of the application are defined by the components keyword.
In this application we have four components: MainC, RPLProtocolC, DAOC and
DIOC.

configuration RPLProtocolAppC { }
implementation {
components MainC, RPLProtocolC, DAOC, DIOC;

RPLProtocolC.Boot -> MainC.Boot;
RPLProtocolC.DAO -> DAOC.RPLPacket;
RPLProtocolC.DI0 -> DIOC.RPLPacket;

DAOC.NODE -> RPLProtocolC.NODE;

Figure 3.6: Source code of RPLProtocol AppC.nc

The RPLProtocolC is using the Boot interface from the MainC component providing
callbacks when the booting process is completed (Line 5). The RPLProtocolC
component is also using the two components for processing RPL packets: the
DAOC and DIOC components (Line 6-7). DAOC uses the NODE-interface provided
by the RPLProtocolC component (Line 9). We see from the configuration file that
both DAOC and DIOC provide the same interface but are mapped to two different

28

name spaces in the RPLProtocolC component.

The line RPLProtocolC.DAO -> DAOC.RPLPacket can be read as PRLProtocolC
uses the RPLPacket interface found in the DAOC component with the local

identifying name DAO. Alternatively it can be read as DAOC provides the interface
RPLPacket which is used by RPLProtocolC locally with the name DAO.

To wire together components, three symbols can be used ->, <- and =. The =
wiring symbol is used to rename another components implementation as its own,
and hence how the configuration is implemented. The -> and <- symbols are used
to wire together already existing implementations. -> and <- syntactical sugar
for the same thing, so that:

DOAC.NODE -> RPLProtocolC.NODE = RPLProtocolC.NODE <- DAOC.NODE

3.2 The TinyOS Platform

TinyOS is used by multiple hardware platforms. The TinyOS platform supports
a wide range of wireless sensor network (WSN) platforms, microprocessors and
peripherals[5]. The TinyOS Enhancement Proposals[4] (TEPs) are a set of docu-
ments discussing modifications and enhancements of the TinyOS platform. The
TEPs deal with best practices, hardware abstractions, and TinyOS libraries and
programming interfaces.

3.2.1 APIs

The TinyOS platform provides a wide range of pre-defined components that are
generic and platform-independent, making them applicable for a wide range of
hardware platforms. These components include interfaces and abstractions for
data structures, communication, working with timers, storing information, logic
for booting, and utilities such as random number generators. For a complete list
of interfaces and components see the TinyOS homepage|2].

Data Structures

TinyOS has a set of predefined platform-independent data structures, a few of
them being:

e First in first out queues (FIFO) with bounded sizes such as the QueueC.nc
and BigQueueC.nc.

29

e Bit arrays for compactly storing bits that support atomic operations
(BitVectorC.nc).

e A dynamic memory pool (PoolC.nc) that when initialized have a maximum
number of items (size). New items can be added and old items can be
removed, but the pool can never grow larger than the initial given size.

e State machines for sharing states (StateC.nc) between components. This
allows components to track the state of other components through a common
interface, and can be used for keeping track of multiple states at the same
time. These state machines have a S_IDLE state, and two methods of
changing the state. The requireState(...) method can require a state
change and will only succeed if the state machine is idle (state = S_IDLE).
The second method, forceState(...), will change the state of the state
machine regardless of the previous state.

e The TinyOS message_t message buffer. A message buffer for sharing data
over link layers that is optimized for compact data storage. The message_t
consists of a header, some data, a footer, and meta-data. The header,
foot and meta data all must be external structs (nx_struct) to ensure
cross-platform compatibility.

Communication

There already exist many implementations of network protocols for the TinyOS
platform and the TinyOS 2.0 Network Protocol Working Group[3] (net2) is
responsible for defining programming interfaces for network protocols. There are
also interfaces for using serial ports communication and radio links.

The radio communication interfaces allow us to send and receive radio packets.
The Active Message interfaces provide abstractions for sending (AMSendC.nc)
and receiving (AMReceiveC.nc) radio messages by using the message_t message
buffers.

The net2 working group has specified and implemented a number of protocols.
They have created an IPv6 implementation for the TinyOS platform, the Berkeley
Low-powered IP stack (BLIP), which other protocols build upon. The most
notable protocols being the Roll Protocol (Chapter 2.1) and the Constrained
Application Protocol (CoAP). CoAP is a protocol used for application to commu-
nicate and transfer data over the web by using a subset of the REST software
architecture.

Other available network protocols include the Collection Tree Protocol (CTP) used
to provide a many-to-one network layer by delivering packages to a sink in the

30

network, and the Link Estimation Exchange Protocol (LEER) for discovering and
exchanging information about the network quality between sensor nodes.

Serial communication is used for communication between sensor nodes and com-
puters. By using serial ports, it is possible to interact with the nodes and read
sensor data as well as inspect network packets. The sensor nodes can use the
computers as proxies to communicate with the outside world.

Utility

TinyOS comes with a set of platform independent utilities. There are components
that allows us to mount (MountC.nc) physical volumes such as SD-cards and hard
drives, and store information locally. Components for handling time and timers
that allow support for preforming actions at given intervals. Components for
interacting with hardware, such as the LedC.nc which is used to interact with
led-lights connected to the hardware devices. There are interfaces that make
it possible to read data (ReadC.nc) from attached devices such as light sensors,
temperature sensors, and accelerometers. Other utilities include random number
generators (RandomC.nc), caching mechanisms (CacheC.nc), and resource sharing
(SimpleArbiterC.nc).

3.2.2 TOSThreads

The TOSThreads threading library allows easy use of threading on the TinyOS
platform with the efficiency of the event-based software architecture that the
TinyOS platform provides. TOSThreads allows for synchronous and asynchronous
code to be executed. The library does not break with the non-blocking and
event-based execution model of the TinyOS platform. The scheduler allows for
asynchronous code to call synchronized code but not the other way around.

To be able to use the TOSThread library, we must change the booting sequence so
that TOSThreads is the thread scheduler that takes control of the microcontroller.
The application has to include a chip_thread.h for the given architecture we are
implementing the components for.

The TOSThreads thread library consist of five main parts: The TinyOS task
scheduler which prioritizes and allocates resources to the threads. A single kernel-
level TinyOS thread that has the highest threading priority. This is to preserve the
timing-sensitive operations of the TinyOS platform. This thread will get priority as
long as the TinyOS task queue is non-empty. A set of user-level application threads
that the TinyOS task scheduler will execute until the TinyOS task queue is no
longer is empty or all of the user-level threads are either done executing, waiting on

31

synchronizing or blocking on I/O operations. The TOSThreads has a well defined
Application Programming Interface (API) with methods for creating, pausing,
resuming and destroying threads. The TOSThreads comes with a corresponding
implementation of this APIL.

3.2.3 TOSSIM

TOSSIM is a sensor node simulator for TinyOS. Using TOSSIM we are able to
simulate how nesC code behaves without having to install the code onto a physical
device. TOSSIM is compiled to a shared library that comes with a set of standard
functions for simulating behaviour. The TOSSIM simulator has full support for
the Micaz platform and some support for the Mica2 platform.

To be able to run the simulation, we have to compile the nesC application with
the sim flag. This will generate a shared library file (_.TOSSIMMoudle.so) and a
python interface (TOSSIM.py) for the library. The generated library allows us to
set up an instance of TOSSIM where we can create new sensor node and simulate
a real environment. The framework gives us access to simulate the network at the
bit level along with packet loss and corrupt packets, and precise measurement of
time and interrupts.

Figure 3.7 shows how we use the dbg (CHAN, msg) method to create debug channels
that allow us to log events and behaviour. In Line 3, we add a debug channel
called state that will be invoked when the nesC method DODAG.setState(. . .)
is called during simulation.

NetNode node;
event void DODAG.setState(State state) {
dbg("state", "%s RPL | State change: %i -> %i.\n",
sim_time_string(), node.state, state);

}

event void Booted.booted() {
dbg("boot", "%s RPL | Application booted.\n",
sim_time_string());
DODAG.setState (JOINING) ;

Figure 3.7: Snippet of the RPLProtocolC.nc component showing debug messages

The python script (simulation.py, shown in Figure 3.8) imports the TOSSIM
library (Line 1), and opens a new file used for logging the events (Line 2). We

32

1

from TOSSIM import x*
log = open("log.txt", "w")

sim = Tossim([]) # creating simulation environment
sim.setTime (0)

sim.addChannel ("boot", log)

=+

listening to boot dbg msgs

sim.addChannel("state", log) # listening to state dbg msgs
m0 = sim.getNode(0) # creating a node
m0.bootAtTime (300) # booting node

for _ in range(5):

sim.runNextEvent ()

+H+

running simulation step

Figure 3.8: Source code of the python simulation script

set the simulation time to start at 0, and then bind the logfile to the two output
channels boot and state.

Given a scenario where the nesC program boots and changes state from 0
(INITNODE) to 2 (JOINING) the log file (log.txt) would contain the following
two lines:

DEBUG (0): 0:0:0.0000000300 RPL | Application booted.
DEBUG (0): 0:0:0.0000000300 RPL | State change: 0 -> 2.

The DEBUG (0) indicates that the id of the node invoking the dbg() method is 0.
The information following is the time of invocation (0000000300) and the debug
message (RPL | Application booted).

The TOSSIM simulator allows us to create nodes (getNode), running simulation
events (runNextEvent), accessing the media access layer (MAC layer), accessing
the network and radio (radio), and adding channels for output (addChannel).
For a complete list of functionality see the TOSSIM API[2].

33

34

Chapter 4

CPN Model Refinements

In this chapter we describe how the CPN Roll Protocol model has been refined.
The refinement has been done by adding TinyOS platform specific details to the
CPN model, and the reader will be given an overview and motivation for each of
the refinement steps.

4.1 Model Refinement Overview

To be able to generate code from an abstract platform independent model, we
have to refine the model so we can make accurate assumptions about how to
translate the model into code specific to a given platform. We can do this by
either making details in the model more explicit, or by introducing conventions
for how the model should be structured.

We started with creating a CPN model representing the behaviour of the Roll
Protocol. The original CPN model used in the case study was created prior to
having domain knowledge about TinyOS as a target platform. The motivation for
this was to keep the CPN model as platform independent as possible. Starting
with an abstract model created without prior domain knowledge would give us a
stronger indication that the refinement approach is generic and can be applied for
other similar problems. The CPN model was created with a hierarchy of three
levels (see Chapter 2.2). The main level contains two parts: one for the network,
and one for the Roll Protocol.

The refinement approach that we have developed consist of five steps that can
be used to add details to network protocol models created with CPNs. These
steps allow us to use the resulting refined CPN model to generate the structure
and the behaviour of the corresponding TinyOS network protocol application.
The generated behaviour does not include the translation of CPN ML expressions

35

to nesC code. Tools for automatically translating Standard ML to C already
exist and have been implemented[19]. For the refinement steps we have chosen to
structure the protocol module (RollProtocol, Figure 2.3) into three levels. At the
top level there is an application containing components. These components are
what constitute the application, and each of these components have an internal
structure of events and commands. These do in turn have an internal structure
describing the behaviour of how they are executed on the target platform. The
five refinement steps are:

Step 1: Component Architecture
The first step is to define the architecture of the application by annotating
CPN submodules corresponding to TinyOS components, and by inscribing
the connected CPN arcs with text specifying which TinyOS interfaces they
are using and providing.

Step 2: Resolving Interface Conflicts
The second step is to resolve interface conflicts. This is done by introducing
the as keyword allowing components to use multiple instances of a single
interface by assigning unique local names.

Step 3: Component and Interface Signature
The third step is to add type signatures to components and interfaces. We
do this by separating the CPN logic into submodules representing TinyOS
events and commands. We generate a TinyOS header file that maps CPN
colour sets to nesC types, and we use the colour set of the connected CPN
places to describe the interface signatures.

Step 4: Component Classification
The fourth step is classifying component types. After defining the interface
signatures we have a specification of the event and command invocations. We
classify the application components into four main types: timed components,
external components, application boot components, and general components.

Step 5: Internal Behaviour
In the fifth and final step of the refinement, we define the internal behaviour
of nesC commands and event handlers. We model a control flow in the CPN
model that allows us to generate the behaviour of TinyOS commands and
events.

We use pragmatics as syntactical annotations for the CPN model to direct the
code generation. The pragmatics add explicit information to the CPN model, and
are used to describe details about the target platform. The extra information
makes the CPN model more expressive in terms of linking elements and structure
to the target platform, and reduces the number of assumptions needed to be
taken during the code generation (Chapter 5). The pragmatics are text strings
that can be used to annotate arcs, transitions, substitution transitions and places.

36

We have chosen to use <<type (paraml, param2)>> as the format for describing
pragmatics, which is the same format as the one described in [18]. The type
describes the pragmatics type, and the (param...) describes extra information
about the given pragmatic. In our final refined model, we have pragmatics for
describing components, events, commands, tasks, and a set of pragmatics for
describing the internal behaviour of events and commands.

4.2 Step 1: Component Architecture

The first step of the refinement process is to find a way to structure the CPN
model so that we can relate CPN modules to TinyOS components. Figure 4.1
shows the original CPN Roll Protocol model (see Chapter 2.2). The original
model is split into four submodules and three places. The submodules (DISDIO,
DAO, DAOACK, and StartupandTimeout) contain the logic of the Roll Protocol.
The LinkToRoll socket-place is used for receiving network packets, RollToLink is
used for sending packets, and the local place DodagState contains the current
information about the network that a node implementing the Roll Protocol has
available.

,INITROOT) ++
,INITNODE) ++
,INITNODE) ++
,INITNODE) ++
,INITNODE) ++
,INITNODE)

oocoooo

1°(1,0,0,
1°(2,0,0,
1°(3,0,0,
1°(4,0,0,
Dodag 1°(5,0,0,
State 1'(6,0,0,

A NetNode

DIS DIO
\—‘DS DIO
Link—'h
DAO

NodexPacket
NodexPacket

DAOACK

DAOACK

Startup and
Timeout

Startup and Timeout

Figure 4.1: Roll Protocol Module - Original

We discovered that both CPN submodules and TinyOS components were encapsu-
lating logic, and for code generation it would be reasonable to assume that TinyOS
components could be represented as CPN submodules. TinyOS applications are

37

built with components, and these components are wired together by an application
configuration file to describe connectivity (see Chapter 3.1.5). CPNs submodules
exchange tokens (data) between places, and from this we could draw a connection
between TinyOS interfaces and CPN socket-places.

The hierarchical structure of CPN models and submodules can be refined to
resemble the component layout of TinyOS applications. The purpose of the
first refinement step is to specify what CPN submodule is to represent which
TinyOS component, and how the components are connected to each other. The
<<component>> pragmatic is introduced to describe the relationship between a
TinyOS component and a CPN module. We annotate the CPN arcs with text to
describe what interfaces each of the components are using and providing. This is
done by inscribing arcs connected to the submodules with interface names. An arc
going into a CPN submodule is indicating that the TinyOS component is providing
that interface, while an outgoing arc is indicating usage of the interface.

Figure 4.2 shows the result of the first refinement step which affects only the
top-level of the CPN model. The substitution transitions are annotated with the
<<component>> pragmatic, and the arcs connected to the substitution transitions
are annotated with which interface they are connected to. The arc going from
LinkToRoll to DISDIO in Figure 4.2 is inscribed with the text NetPacketInterface.
This is a representation of the interface that would be provided by the generated
DISDIO TinyOS component. The StartupAndTimeout submodule is discarding
packets received after timing out, and does not process packets the same way
as the other submodules, which is why it does not have an associated interface
specification.

38

State

<<component (StateP)>> 1°(1,0,0,0,INITROOT) ++
1'(2,0,0,0,INITNODE) ++
1'(3,0,0,0,INITNODE) ++
1'(4,0,0,0,INITNODE) ++
1'(5,0,0,0,INITNODE)++
Statelnterface 1°(6.0.0,0,INITNODE)
A NetNode
Statelnterface
N
NetPacketl nterface DIS DIO
<<component (DISDIOP)>>
DIS DIO
Statel nterface
N
Link To \NetPacketlnterfpcg DAO
Roll <<component (DAOP)>>
[DAQ] NodexPacket
NodexPacket
Statelnterface
N
N\ _NetPacketI nterface DAOACK
<<component (DAOACKP)>>
DAOACK
Statel nterface

\ > Startup and Timeout

<<component (StartAndTimeP)>>

Startup and Timeout

Figure 4.2: Roll Protocol annotated with TinyOS interfaces and components

Figure 4.3 shows a snippet of the code generated based on the pragmatics in
Figure 4.2. Line 3 lists the CPN submodules annotated with the <<component>>
pragmatic and line 5-8 shows a sample of the application wiring. The RPLProtocolP
TinyOS component is representing the CPN module containing the components,
while Line 11-12 shows the generated interfaces.

The first CPN model refinement allows us to generate a simple structure of
the TinyOS application with information about the components, and how they
interact through interfaces. The generated code is still missing a lot of required
details to be operational. As an example, if the same interface is used multiple
times by a single component there is no way to differentiate between which
interface is provided by what component (e.g. DISDIO and DAO both provide the
NetPacketInterface). The inscription on arcs can also be hard to understand
as there is no explicit annotation as to whether the interface is used or provided.
Furthermore, the generated code contains no types, commands or events.

39

1

configuration RollProtocolAppC { }
implementation {
components DISDIOP, DAOP, DAOACKP, StartAndTimeP, StateP,
RollProtocolC;

DAOP.DodagState <- RPLProtocolP.DodagState;
DAOP.LinkToRoll <- RPLProtocolP.LinkToRoll;
RPLProtocolP.DodagState -> DAO.DodagState;
RPLProtocolP.DodagState -> DAOACK.DodagState;

interface NetPacketInterface { }
interface StateInterface { }

Figure 4.3: Generated TinyOS Configuration Code
4.3 Step 2: Resolving Interface Conflicts

The second step of the refinement is to resolve ambiguities in the way interfaces
are described. The CPN socket place LinkToRoll, (see Figure 2.3 and Figure 2.5)
connecting the top level of the CPN model to the protocol submodule is acting as
both an external interface for the CPN network module, and as a local interface
for the submodules in the protocol module. The second issue with interfaces after
the first refinement step is that a single component cannot use multiple instances
of a single interface provided by different components.

To resolve the ambiguities where socket places was used as multiple interfaces, we
add an additional transition between the incoming socket place and the places
going into submodules. Figure 4.4 shows the CPN Roll Protocol after the second
step of the refinement. We have split the LinkToRoll into two places, this is
to differentiate between the externally received packets (tokens added to the
LinkToRoll place), and the packets that are processed within the application. The
second step in resolving interface ambiguity is to allow TinyOS components to
use multiple instances of a single interface. This is resolved by adding an as
keyword to the arcs that allows us to give interfaces local unique names. From
Figure 4.4 we see that some of the interface declarations on incoming arcs of
substitution transitions contain the as keyword. This allows a single component
to use multiple instances of the same interface. We have also introduced some
syntactical sugar for the annotations allowing us to use the keywords provides
and uses for readability.

40

State
<<component>>

, INITROOT)++
,INITNODE) ++
INITNODE)++
INITNODE)++
, INITNODE) ++
,INITNODE)

10,

B e

0,0
0,0
0,0,
0,0
0,0
0,0

[=X=R=R=R=%=}

provides interface_State

NodexPacket A NetNode
nxp
uses interface_State
provides interface_RPLPacket as NetDS)IO
Dispatch r DIS DIO
<<component>>
DIS DIO
nxp uses interface_State
pac;hprovides interface_RPLPacket as NetlhAO DAO
Queuy <<component>>
NodexPacket [DAO] e NodexPacket
uses interface_State
. provides interface_RPLPacket as Netl)APACK DAOACK
<<component>>
DAOACK
ses interface_State
K Startup and Timeout
<<component>>

Startup and Timeout

Figure 4.4: Roll Protocol ambiguities resolved

Figure 4.5 shows the generated nesC code after the second refinement step. The
TinyOS wiring reflects the use of interface aliases, and the wiring in Line 4-6
connects the interfaces provided by DISDIO, DAO and DAOACK to the RollProtocol
component. Line 9-12 describes how the RollProtocol component uses a single
interface with three distinct local names, i.e, the interface interface_RPLPacket
is given a unique alias for each instance. The wiring specifies how the aliases are
mapped to other components.

The second refinement of the CPN model has resolved the ambiguities with
providing and using multiple interfaces, as it has made the interface annotations
more readable. The generated code contains the application structure and reflects
how the components uses and provides interfaces. The generated nesC code
does not provide details on what command and event signatures the interfaces
include.

41

1

configuration RollprotocolAppC { }
implementation {

RollProtocol.NetDISDIO -> DISDIO.interface_RPLPacket;

RollProtocol.NetDAO -> DAO.interface_RPLPacket;

RollProtocol.NetDAOACK -> DAOACK.interface_RPLPacket;
Yoo
module RollProtocolC {

provides interface interface_RPLPacket as NetDISDIO;

provides interface interface_RPLPacket as NetDAO;

provides interface interface_RPLPacket as NetDAOACK;

Figure 4.5: Generated component with multiple usage of a single interface
4.4 Step 3: Component and Interface Signatures

To be able to generate a meaningful application structure for the TinyOS platform
from CPNs, we need a way to describe methods and types used in the interfaces.
The third refinement step introduces types, events and commands to the CPN
model. Here we exploit a relationship between CPN places and TinyOS interfaces,
CPN places are used for moving tokens between CPN submodules and can be
viewed as a representation of TinyOS interfaces. Each of the CPN places connected
to the substitution transitions annotated with the <<component>> pragmatic has
a type (colour set) that can be translated into a nesC type.

We introduce the <<interface>> pragmatic which we use to make explicit the
relationship between CPN places and TinyOS interfaces. By introducing this
pragmatic, we no longer have to make the assumption that all connected places
are interfaces. We use the colour set of a CPN place to describe the interface
signature. When looking closer at the relationship between CPN colour sets and
nesC types, it can be seen that colour sets can be translated into nesC types
by making assumptions about how primitives are translated. The translation of
types is described in detail in Chapter 5.2.1.

Figure 4.6 shows the generated nesC structs and the corresponding colour set
declarations for the NodexPacket and the Packet types. We were able to translate
colour sets defined in the CPN model automatically to their respective nesC

types.
The original CPN model was modelled in a way that made it hard to distinguish
between the behaviour of events and commands. This is because there was a

small number of transitions and places modelling much of the behaviour, i.e, it
was modelled in a very compact manner. A transition could execute multiple

42

colset Packet = product
Dest * PacketType;

typedef struct {
Dest dest;
PacketType packettype;
} Packet;
typedef struct {
Nodes nodes;
Packet packet;
} NodexPacket;

colset NodexPacket = product
Dest * Packet;

Figure 4.6: Sample of generated nesC header file and corresponding colour sets

actions at once via complex expressions on the outgoing arcs, and those actions
could in turn manipulate the tokens at multiple places.

Figure 4.7 shows the original DISDIO module which contains logic for handling
both DIS and DIO packets. The CPN submodule can receive packets from the
LinkToRoll place and based on the packet-type, it will either send a response
by enabling the SendDIOResponse transition or update the node status by en-
abling the ReceiveDIOResponse transition, and the module could send DIS (the
SendDISReq transition) requests regardless of it receiving packets or not. The
CPN module shown in Figure 4.7 illustrates how it can be difficult to know what
behaviour corresponds to which TinyOS commands or events, as there is no
explicit information in the module specifying this. The solution to this problem
is to encapsulate the logic for events and commands in their own submodules as
shown in Figure 4.8.

n, rank, ver, parent, JOINING
(n, rank, ver, parent,) Send DIS Req

NetNode

(n2, rank, ver, parent, state) objectiveRynction(n, n2, rank, ver, rrank, rver, parent, state)

discoveryReq(n)

N NodexPacket

(DEST(n), [PIO(rank,ver)))

n2, rank, ver, parent, state)

Receive
DIO Response

(n, (DEST n2, DIO(rrank,rver)))

(n, (DEST n2, DIS)) Send DIO

Link To I
Response

Roll

[state = JOINED orelse state = ROOTJOINED]
NodexPacket

Figure 4.7: DISDIO Module - Original

Figure 4.8 shows the model after the third refinement step. Each event is rep-

43

resented as a substitution transition annotated with the <<event>> pragmatic.
The submodules contains the logic associated with the corresponding event. The
arcs describe the relationship to other interfaces, and the places connected to the
submodule describes interface method signatures. Arcs going into a submodule
with the <<event>> pragmatic correspond to event invocations, outgoing arcs are
interface calls with no return value, and bidirectional arcs are invocations of a
command or an event that returns a value.

receiveDIO
4 <<event>>

ReceiveDIO

Di

SDIO

Bl
ila.

NetNode

receiveDIS
<<event>>
ReceiveDIS NodexPacket

Figure 4.8: DISDIO Module - refined structure

NodexPacket

At this point, we are able to generate the structure of the interfaces and the header
file needed to describe the TinyOS types. We can also generate the interaction
between the components. This is done by assuming that events have no return
value, and that all places connected to submodules annotated with the <<event>>
pragmatic are interfaces.

Figure 4.9 shows the generated code for the interface provided by the DISDIO
component. The interface contains all the events and commands in a submodule
annotated with the <<event>> or <<command>> pragmatics. Line 1 includes the
generated header file containing the nesC types translated from the colour set of
the CPN model. Line 3 corresponds to the arc between DISDIO and receiveDIO in
Figure 4.8, and Line 4 to the arc between DISDIO and receiveDIS.

#include "global.h"

interface DISDIO {
event void receiveDIO(NodexPacket var_nodexpacket);
event void receiveDIS(NodexPacket var_nodexpacket);

Figure 4.9: Generated nesC Interfaces with Types

During the model refinement of events and commands, we identify the functionality
of the network protocol that is not triggered by external events (e.g. by receiving

44

a network packet). At this point in the refinement we are not able to differentiate
between externally triggered events and events that should be executed at regular
intervals.

4.5 Step 4: Component Classification

Not all events are invoked by external calls, and the fourth refinement step is
to classify component into component types. The observation that some of the
functionality would be invoked by external calls, run a single time at application
boot, and that some functionality would be triggered at regular intervals motivated
us to classify components into five distinct types. The five classifications are:
events that should be triggered at startup (boot), tasks that should be run at a
given interval (timed), externally provided components (external), a dispatcher
(dispatch) that would parse network packets, and regular components triggered
by event or command invocation.

We added a timed parameter to the <<component>> pragmatic, which is used to
annotate components containing tasks that should be triggered periodically. We
added a component for timed tasks, and moved the events and commands that
would not be triggered externally into this component. The submodules that are
to be triggered regularly are annotated with the <<task>> pragmatic. The timed
component in the refined CPN model (Figure 4.10) has functionality for sending
DIS and DAO packets, for increasing the DODAG version number, and logic for
timing out while waiting for DAO acknowledgements. Figure 4.11 shows the code
generated for the interface of the timed task component. Line 6-9 describe the
signatures of the TinyOS tasks that the TimedTasks implements and Line 2-3
describes the interface usage of the component, which is reflected in Figure 4.14
by the annotated arcs going into the TimedTasks substitution transition.

Submodules annotated with the <<component (boot)>> pragmatic contain logic
that will only be run at application boot. In the refined CPN model, the component
annotated with the boot parameter (Startup, Figure 4.14) contains logic for
deciding if the node should boot as a root-node or as a regular node, as shown by
Figure 4.12.

The components annotated with <<component (external)>> are components
that will not be generated by the code generation, and will have to be implemented
manually (or connected to an existing TinyOS library component provided by
the platform). The components using interfaces annotated with the external
parameter will be generated with the correct usage of the interface, and the
application configuration file will also reflect the fact that components are using
the external components.

45

State
NetNode

A

N > SendDISReq

<event (timer)>

SendDISReq

N > SendDAO

<event (timer)>

SendDAO

N > IncreaseDODAG

<event (timer)>

IncreaseDODAG

\ » Timeout

<<event (timer)>>

Timeout

A 4

NetSend

NodexPacket

Figure 4.10: Roll Protocol Module - Timed tasks component refinement

1 module TimedTasksC {

2 provides interface NetSend;

3 uses interface State;

.}

5 implementation {

6 task void SendDISReq() { }

7 task void SendDAO() { }

8 task void IncreaseDODAG() { }
9 task void TimeOut() { }

Figure 4.11: Generated TimedTasks component

(n, 0, 0, 0, INITNODE) (n, 0, 0, 0, INITROOT)
Node JOIN [o State |4 ”"| Root JOIN
(n, 0, 0, 0, JOINING) U (n, 1, 1, 0, ROOTIOINED)

NetNode

Figure 4.12: Roll Protocol Module - Startup component refinement

The dispatch component, as shown by Figure 4.13, is assigned to be a dispatcher
for network packets. The dispatcher is an interface towards the external network,

46

signal(

receiveDIO,

(n, (DEST n2, DIO(rrank,rver)))
)

|

(n, (DEST n2, DIO(rrank,rver)))

» DbIO
1 DISDIO
signal(<interface>>
receiveDIS,
(n, (DEST n2, DIS))
(n, (DEST n2, DIS))) NodexPacket
r“ DIS
signal(
receiveDAO,
(n, (DEST n2, DAO(rank,rver,data,0)))
(n, (DEST n2, DAO(rank,rver,data,0)))
T DAO
signal(DAO
receiveDAOWACK, <interface>>
(n, (DEST n2, DAO(rank,rver,data,1))) [out]
(n, (DEST n2, DAO(rank,rver,data,1))) DAO with) = NodexPacket
ACK Req

signal(
receiveDAOACK,
(n, (DEST n2, DAOACK(rrank,rver)))

)
(n, (DEST n2, DAOACK(rrank,rver))) [DAOACK
DAOACK <interface>/>
NodexPacket

Link To
Roll

NodexPacket

Figure 4.13: Roll Protocol Module - Dispatch component refinement

and receives the network packets and signals the correct component based on
which type of packet received. The dispatcher component will signal the packet
processing components, and will replace the overlying RollProtocol component
from the previous refinement steps. The refined CPN model has the following
processing components: the DISDIO component processing DIS and DIO packets,
the DAO component processing DAO packets, and the DAOACK processing
acknowledgements to DAO packets.

Figure 4.14 shows the refined structure of the CPN Roll Protocol. We have gone
from a very compact model to a model with explicit details for the target platform.
The structure contains pragmatics to describe different types of components, and
CPN places annotated with the <<interface>> pragmatic to describe TinyOS
interfaces. The arcs between the places and submodules describe the connection
between the interfaces and components.

The code generated from interfaces will at this point in the refinement include
events and commands with types, the relationship between components and
interfaces, and the TinyOS wiring will be generated based on the arcs representing
components using and providing interfaces. The first four refinement steps
enabled us to use the refined CPN model to generate the structural outline of the
corresponding TinyOS application.

47

, INITROOT) ++
,INITNODE) ++
,INITNODE)++
,INITNODE) ++
,INITNODE) ++
,INITNODE)

State
<<component>>

[
SURLNE
ocooooo
cooooo
coooo0o

provides State

Startup uses State

<<component (boot)>>

TimedTasks

<component (timed)>%
[TimedTasks |

uses State

NetNode

Startup A
uses State
provides DISDIO DISDIO uses DISDIO > DISDIO provides NetSend
<interfacey> <<component>> N
NodexPacket
B provides NetSend
uses State
provides PAO DAO uses DAO »> DAO provides NetSend
<interfacey> <<component>>
NodexPacket DAO
uses State 4
provides DPAOACK DAOACK uses DAOACK) DAOACK NetSend
<interfacey> <<component>> <interface>
NodexPacket DAOACK NodexPacket
uses NetSend

Dispatch
<<dispatch>>

NetSend
<<component (external)>>

etSend

N NodexPacket

Figure 4.14: Roll Protocol Module - Component Refinement

0

NodexPacket

4.6 Step 5: Internal Behaviour

The final step of the refinement process is to describe how the protocol behaves
internally. We introduce pragmatics to describe the control flow where the order
of execution is clearly identifiable. By having a token move in a single path
between places, we are able to obtain a clearly identifiable control flow that can
be exploited for code generation purposes.

Figure 4.15 shows the refined receiveDIO event. The Receive DIO event module is
a refinement of the ReceiveDIOResponse transition in Figure 4.7. The transition is
connected to two places, namely LinkToRoll and DodagState. We have refined the
ReceiveDIOResponse transition by introducing new pragmatics to unambiguously
specify the corresponding TinyOS nesC code. We use the <<ID>> pragmatic
to describe the control flow. By using the <<ID>> pragmatic, we can create a
clearly identifiable path of execution. The initial place of the control flow, Idle, is
identifiable by having an initial marking (true, bool). The token is moved down

48

true

BOOL DIO
b (n, (DEST n2, DIO(rrank,rver))) <<invoke>>

< Receive DIO
(n, (DEST n2, DIO(rrank,rver)))

NodexPacket

Get State

(n, (DEST n2, DIO(rrank,rver)) <<ID>>

=

n, (DEST n2, DIO(rrank,rver))

=

call(getState, empty) -
Get State 1
(n2, rank, ver, parent, state)

State
<interface>

node_state
<<Var>>

n2, rank, ver, parent, state)

NetNode
(n2, rank, ver, parent, state)

A

Calculate State

<<ID>>

>

new_state \ 4 Compute

<<vi»)‘ new state
objectiveFunction(n, n2, rank,
A

ver, rrank, rver,
NetNode parent, state)

Update State
<<ID>>

Done
<<ID>>

BOOL BOOL

nn
- Set State ~
call(setState, nn)

b J

Figure 4.15: Refined CPN model of the Receive DIO event

through the line of places annotated with the <<ID>> pragmatic. In each step of
the model execution, we use predefined patterns to recognize behaviour. We use
the <<invoke>> pragmatic to describe the signature of the event or command,
and the <<var>> pragmatic to store values between the transitions in the control
flow. By using a clearly identifiable control flow and pragmatics to add additional
information, we can generate the equivalent nesC behaviour. The generation of
behaviour is described in detail in Chapter 5.3.

Figure 4.16 shows the generated nesC code of the receiveDIS event (Figure 4.15).

By following the control flow and using pattern recognition, we are able to generate
nesC statements for each of the transitions in the CPN model. Line 1-3 shows

49

NodexPacket

NetNode

1

the outline of the CPN ML objectiveFunction used on the arc from transition
ComputeNewState to the place new_state in Figure 4.15. The code generator is
not able to translate CPN ML to nesC, but it can generate an outline of the
function. Line 4 is the generated event signature, and Line 5-7 shows the CPN
places annotated with the <<var>> pragmatic (packet, node_ state and new_state).
These places are translated into nesC variables, and the variable type is determined
by the colour of the CPN place. Line 9 corresponds to storing the incoming packet
in the invocation of the event (ReceiveDIO), Line 10 to the external interface call
and variable assignment of GetState, Line 11 to the variable assignment of the
result of the objectiveFunction (ComputeNewState), and Line 12 corresponds
to the call of the State interface (SetState) with the updated result from the
objectiveFunction.

NetNode objectiveFunction(Nodes n, Nodes n2, Rank rank, DodagVerNum
ver, Rank rrank, DodagVerNum rver, Nodes parent, STATE state) {
// return <TYPE: NetNode>;

}

event void DISDIO.receiveDIO(NodexPacket var_nodexpacket) {
NetNode new_state;
NetNode node_state;
NodexPacket packet;

packet = var_nodexpacket;
node_state = call State.getState();
new_state = objectiveFunction(...);
call State.setState(new_state);

Figure 4.16: Generated Behaviour of the receiveDIO Event

20

4.7 Discussion

By following the five refinement steps that we have identified, we can use the
resulting refined CPN model to generate the structure of a nesC network protocol
application and the internal behaviour of the protocol. The generated behaviour
does not include the translation of CPN ML functions to nesC code, or branching
of the control flow (if statements, and loops). There exists a tool for translating
Standard ML to C[19], and automatically translating CPN ML to nesC has not
been an area of focus in this thesis. A complete overview of the code generated
from our CPN Roll Protocol Model can be found in Appendix C. Table 4.1 list
the pragmatics used by the code generator to recognize structure and behaviour

in CPN models.

Pragmatic

Scope

Summary

<<component>>

structure

Describes the relationship between TinyOS compo-
nents and CPN submodules. We use the parameters
of the pragmatic to differentiate between the five
component classifications; boot, timed, external,
dispatcher, and regular components.

<<interface>>

structure

Used together with arc annotation to describe the
relationship between CPN places and TinyOS in-
terfaces.

<<command>>

component

Describes the relationship between substitution
transitions and TinyOS commands. Connected
CPN places describe the return type, and the com-
mand parameters.

<<Levent>>

component

Describes the relationship between substitution
transitions and TinyOS events. Connected CPN
places describe the return type, and the event pa-
rameters.

<<task>>

component

Describes the relationship between substitution
transitions and TinyOS tasks.

<<id>>

behaviour

Describes the control flow of an event, command
or task. Used to create a clearly identifiable path
of execution.

<<invoke>>

behaviour

Describes the invocation parameter types of com-
mands and events in the control flow.

<Lvar>>

behaviour

Describes the relationship between CPN places and
TinyOS variables. Used to store values between
transitions in the control flow.

Table 4.1: List of Pragmatics

o1

52

Chapter 5

Code Generation

In this chapter we introduce the technical details on how to generate code for the
TinyOS platform. We have created a code generator that takes a CPN model,
refined by the five steps in Chapter 4 as input, and generates code for the TinyOS
platform. The TinyOS application is generated in two steps. The first step is
to generate the structure of the application, and the second is to generate the
behaviour of the TinyOS commands and events.

The application structure is generated from a CPN model refined by the steps we
have shown in Chapter 4. The refined model include pragmatics that helps us by
providing additional information to the model that we can derive patterns from.
The reader will be introduced to how we use pragmatics to assist us in generating
the application structure of a TinyOS network protocol, and how we have derived
patterns to recognize CPN behaviour that can be translated to nesC code. By
using the control flow pragmatics, we show that we are able to generate TinyOS
nesC code corresponding to the behaviour of the CPN model.

5.1 The Code Generator

The code generator is written in Java and is using the Access/CPN framework for
parsing the CPN model given as input. The code generator is split into two main
parts: The generation of the TinyOS application structure and the generation of
the internal behaviour of TinyOS events and commands. The code generator is
built around a set of utilities for managing and mapping the relationship between
the CPN model and code generated for the TinyOS platform. The code generator
is structured as follows:

23

org.veiset.codegen makes up the main program of the code generator. This
package is responsible for connecting the generated TinyOS application
structure, and command and event behaviour together. Contains options
for setting the output format of the generated code.

org.veiset.codegen.structure generates a Java representation for the outline
of the TinyOS application structure. The package contains logic for creating
and connecting interfaces and components together.

org.veiset.codegen.behaviour generates the behaviour of TinyOS commands
and events based on the structure of CPN arcs, transitions and places that
are annotated with pragmatics.

org.veiset.codegen.tinyos is used for representing TinyOS types, components,
interface and wiring in Java. These Java representations also includes the
translation of going from the Java representation and to corresponding
TinyOS nesC code.

org.veiset.codegen.util contains utilities for mapping CPN concepts to Java
representations (e.g, maps for looking up colour sets), tools for parsing
pragmatics and CPN arc directions, and utilities for translating CPN colour
set to TinyOS types.

5.2 TinyOS Application Structure

This section explains how we use the code generator and the refined model to
outline the structure of a TinyOS network protocol application. The application
structure consists of TinyOS components and interfaces, and these components
are glued together with an application wiring file. The generated wiring specifies
what component uses which interfaces, and which component is providing the
used interfaces. To be able to wire components together, we need to define the
signature of interfaces, and this is done by generating a nesC header file that
maps CPN colour sets to nesC data structures.

5.2.1 Header file

The code generator we have developed, takes a CPN model as input, and based
on the colour set declarations of the model, generates a list of corresponding
nesC types. To be able to generate the nesC header file, we have to make some
assumptions about the primitive types of both platforms.

We are able to generate nesC type representations of all colour sets by assuming
that the relationship between primitives of nesC and CPN colour sets are as

o4

N

described in Figure 5.1. The code generator requires that all colour sets used
in the CPN model are based on the UNIT, BOOL, INT and STRING colour sets.
By adding this restriction, we are able to use these as primitive types on both
platforms, and this makes it possible to build structured colour sets that we can
translate into corresponding nesC data structures.

colset UNIT = unit; | typedef int unit;
colset BOOL bool; | typedef bool BOOL;
I
|

colset INT = int; typedef int INT;
colset STRING = string; typedef char string;

Figure 5.1: Assumptions of primitive header types

The colour sets are translated to nesC data structures by recursively checking if
the type of the colour set is already defined. The colour set will be translated
to the corresponding nesC data structure once all the colour sets it is built from
are either previously defined or are of a primitive type. We categorize colour sets
into five main types: Singletons, Lists, Enumerations, Products, and Unions. The
code generator stores colour sets in each of these categories. When translating
a type, the code generator will recursively lookup the type needed to define the
new declaration.

The translation of singletons and lists is illustrated in Figure 5.2 by the Nodes
and NodeList colour sets. We translate colour set consisting of a single colour to
be generated as non-compound nesC data structures, and colour sets that are lists
of non-compound data structure to be represented as nesC arrays. We set the
default arrays size to 15, this is done by adding “#define ARRAY DEFAULT SIZE
15” to the top of the header file, which allows us to easily increase or decrease the
default size. This constant is added to the size attribute of the generated array
declarations, and to avoid multiple includes of the header file we use a header
guard (#ifndef GLOBAL H _INCLUDED...) to check if the header is previously
included.

colset Nodes = int; | typedef int Nodes;
colset Nodelist = | typedef Nodes
list Nodes; | NodeList [ARRAY_DEFAULT_SIZE];

Figure 5.2: Translation of variables and arrays

In CPNs, we have colour set that uses the with keyword, and these colour sets
lists a set of constants. We translate these colour sets to nesC enumerations. This
is done by iterating through the choices in the enumerate colour set and adding a
increasing number value to the nesC enum representing. Figure 5.3 shows the step
of going from a colour set with named values and to a nesC enumerations.

95

1

colset STATE = with typedef enum {

|
NODE | NODE = 0,
| ROOT | ROOT = 1,
| JOINED | JOINED = 2,
| JOINING | JOINING = 3,
| ROOTJOINED | ROOTJOINED = 4,
| WAITING | WAITING = 5,
| INITROOT | INITROQOT = 6,
| INITNODE; | INITNODE = 7,
| } STATE;

Figure 5.3: Translation of enums

CPN products are colour sets that consists of two or more colour sets, and these
are represented as nesC structs by our code generator. The code generator goes
through the colour sets constructing the product type, type by type, and creates
a struct with a type and a name corresponding to each element in the CPN
product. The struct attribute type is given by looking up the CPN type, and
defining it if needed. The attribute name is given as the type of the attribute
in lowercase, plus a _val postfix. The postfix is given so we avoid using type
definitions as names. If multiple occurrences of the same colour set is defined in a
single CPN product, we append a number to the postfix to make sure we have
unique identifiable attribute names in the corresponding TinyOS struct. The
translation of a CPN product to a nesC struct is shown in Figure 5.4.

colset NetNode = product typedef struct {

I
Nodes | Nodes nodes_val;
* Rank | Rank rank_val;
* DodagVerNum | DodagVerNum dodagvernum_val;
* Nodes | Nodes nodes_val2;
* State; | STATE state_val;
|

} NetNode;

Figure 5.4: Translation of products (data structures)

The CPN union type can contain a set of predefined colour sets and/or constants.
We have translated the CPN unions into nesC unions. The translation is similar
to that of products and nesC structs, with the exception of the named attribute.
We have chosen to translate CPN record entries with the null-type (constants)
into nesC chars. Figure 5.5 shows the Dest CPN union and the corresponding
TinyOS union.

By introducing some basic CPN colour set and defining how they should be

o6

1

3

1

colset Dest = union typedef union {

|
ALL: null | char ALL;
+ DEST: Nodes; | Nodes DEST;
| } Dest;

Figure 5.5: Translation of unions

translated, we are able to generate a complete nesC header file that contains nesC
data structures representing all the colour sets defined in a CPN model.

5.2.2 Interfaces

To be able to generate TinyOS interface signatures we annotate CPN places
with the <<interface>> pragmatic, and inscribe the arcs going in and out of
these places with additional information. This information specifies whether the
interface is provided or used by the component (substitution transition) connected
to the place. We look at the arcs inscribed with the provides keyword to find
components providing interfaces. The components providing an interface contain
submodules representing TinyOS events and commands, and based on these
submodules we generate the signature of the interface.

Figure 5.6 shows three places annotated with the <<interface>> pragmatic con-
nected to a substitution transition annotated with the <<component>> pragmatic.
The interface DISDIO is used by the component. The code generator will check the
component that uses the interface, and extract the signatures of the commands
and events based on the submodules.

The commands and events will be added to the interface, allowing the code
generator to determine the signature of the interface. The code generator will go
through each place annotated with the <<interface> pragmatic and resolve the
signature.

By looking at the DISDIO interface in Figure 5.6, the code generator will identify
that the DISDIO component is using the interface. The code generator will then
check the internal structure of the DISDIO substitution transitions for submodules
annotated with the <<event>> or <<command>> pragmatic. These will be used to
generate code describing the return type, the name, and the input parameters of
the event or command. DISDIO contains two events, and Figure 5.7 shows the
resulting code of the pattern shown in Figure 5.6.

By looking at places annotated with <<interface>>, their arcs, and the connected
substitution transitions annotated with <<component>> we are able to generate
TinyOS interfaces with signatures for commands and events.

57

<interface>/>
NetNode

uses State

DISDIO uses DISDIO ¢ DISDIO provides NetSend
<kinterfacey> <<component>>
NodexPacket

DISDIO

NetSend
< <interface>p

NodexPacket

Figure 5.6: Interface Component Pragmatic

1 #include "global.h"

> interface DISDIO {

3 event void receiveDIO(NodexPacket nodexpacket);
1 event void receiveDIS(NodexPacket nodexpacket);

Figure 5.7: Code for the Generated Interface

5.2.3 Components

Components are generated by looking for substitution transitions annotated with
the <<component>> pragmatic. The code generator will look at the interfaces
provided and used by the component, and add these to the module section of
the TinyOS component. The substitution transitions have internal submodules
that represent TinyOS events and commands. The internal submodules anno-
tated with the <<event>> are generated as TinyOS events, and submodules
annotated with <<command>> as TinyOS commands. The code generated for the
TinyOS components consists of signatures corresponding to these events and
commands.

We have derived multiple component types. Components annotated with <<component
(timed)>> consist of submodules annotated with the <<task>> pragmatic, while

the internal structure of the components annotated with the <<component (external)>>
will not be generated.

Figure 5.8 shows a set of the components defined in the refinement steps. The
components are annotated with the <<component>> annotation, which will allow
the code generator to find them in the CPN model and generate code for the
TinyOS platform.

Figure 5.9 shows the generated code for the DISDIO component. Line 1-5 describes

o8

State
<<component>>

State

provides State

Startup o uses State N TimedTasks
<<component (boot)>> uses State =1 el F<component (timed)>
NetNode _TlmedTasks
Startup
DISDIO
<<component>>
uses State
DISDIO

Figure 5.8: Component Patterns

the relationship between the component and the interfaces, and Line 6-9 describes
the internal structure of the component.

module DISDIOC {
provides interface DISDIO;
uses interface State;
uses interface NetSend;

}
implementation {
event void DISDIO.receiveDIO(NodexPacket var_nodexpacket) { ... }
event void DISDIO.receiveDIS(NodexPacket var_nodexpacket) { ... 7}
}

Figure 5.9: Generated TinyOS component

5.2.4 Wiring

By looking at the relationship between the generated interfaces and components,
we are able to generate the TinyOS application wiring. The first step of generating
the wiring is done by listing the names of the substitution transitions annotated
with the <<component>> pragmatic. The second step is done by looking at all the
used interfaces, and these will then be mapped against the component proving
them. Figure 5.10 shows the generated TinyOS application wiring for the CPN
Roll Protocol model. Line 3 lists the components in the application, and Line 5-12
shows how the components are using interfaces, and which components that are
providing the used interfaces, i.e, the wiring of the application.

29

1

configuration ConfigurationApp {}
implementation {
components DISDIOC, StartupC, DAOC, DAOACKC, StateC, TimedTasksC,
NetSendC;

DISDIOC.State —-> StateC.State;
DAOC.State -> StateC.State;
DAOACKC.State -> StateC.State;
TimedTasksC.State -> StateC.State;
StartupC.State -> StateC.State;
NetSendC.NetSend -> DISDIOC.NetSend;
NetSendC.NetSend -> DAO.NetSend;
NetSendC.NetSend -> TimedTasks.NetSend;

Figure 5.10: Generated TinyOS wiring
5.3 Behaviour

Generating concrete behaviour from abstract models requires us to add restric-
tions or additional information to the model. By refining the CPN submodules
representing the internal behaviour of the event and commands, we are able to get
enough details to generate nesC code that reflects this behaviour. This is done by
using pragmatics linked to control flow elements that makes it possible to clearly
identify the path of execution. By structuring the CPN models of components and
events based on a control flow and by using pragmatics, we are able to generate
the nesC code that corresponds to the behaviour of the CPN submodule.

By looking closer at each step in the control flow, we have created distinguishable
patterns for detecting behaviour that we could translate into nesC code. A pattern
is a generalisation of a set of transitions, places and text strings. We can use the
pattern to find concrete implementations of the general pattern in CPN models.
To be able to generate behaviour for the TinyOS platform, we use a <<ID>>
pragmatic for describing the control flow of a CPN model.

We create a graph representation of the control flow by using the CPN place
annotated with <<ID>> that has an initial token as the source node of the graph.
The source node is found up by looking up the control flow node that has an initial
colour set token defined. We follow the connected transitions to the initial place
and find the transitions leading to new control flow nodes. Transitions between
two control flow nodes will be represented as an edge in the graph. The control
flow of Figure 5.11 will be represented as the following graph:

60

(

true

BOOL

DIO

b

(n, (DEST n2, DIO(rrank,rver)))

K

n, (DEST n2, DIO(rrank,rver)))

Receive DIO

NodexPacket

n, (DEST n2, DIO(rrank,rve?)

=

Get State

<<ID>>

node_state
<<Var>>

n, (DEST n2, DIO(rrank,rver))

=

n2, rank, ver, parent, state)

Get State

<<invoke>>

NodexPacket

call(getState, empty)

g State

Ll
| <interface>

(n2, rank, ver, parent, state)

NetNode yy NetNode
(n2, rank, ver, parent, state) b
Calculate State
<<ID>>
BOOL
b
b %’
new_state \ 4 Compute
<<var>> [T new state
/objectiveFunction(n, n2, rank,
A ver, rrank, rver, b
NetNode parent, state)
Done Update State
<<ID>> <<ID>>
BOOL BOOL
- on Set State ~
call(setState, nn)
b J
Figure 5.11: Receive DIO model behaviour
NODE EDGE NODE
Idle (initial) (Receive DIO ->) GetState
Get State (Get State ->) Calculate State
Calculate State (Compute New State ->) Update State
Update State (Update State ->) Done
Done (Return ->) Idle

By looking at each edge in the control flow, we are able to generate an outline of
the nesC code corresponding to the CPN behaviour. We can add further details
about each step by introducing patterns and conventions for describing behaviour.

61

)

We introduce two pragmatics to describe details in the control flow. The <<var>>
pragmatic to represent nesC variables, and the <<invoke>> pragmatic to represent
nesC method invocation.

5.3.1 Method Invocation Pattern

There are two types of TinyOS event and command invocations that we wish to
differentiate between. One is invocation with parameters, the other is without
parameters. We have created a Method Invocation Pattern to find the entry
point of TinyOS events and commands. We use the <<ID>> pragmatic to find the
control flow node with an initial marking, and we use the <<invoke>> pragmatic,
if it exists, to determine the parameter type.

The invoke pattern is detected by checking the transition between two control
flow nodes. If the transition has an incoming arc connected to a place annotated
with the <<invoke>> pragmatic, then we use the arc inscription and the colour
set of the place to determine the signature of the nesC command or event.

The Concrete Pattern of Figure 5.12 is a concrete representation of the Method
Invocation Pattern in the CPN Roll Protocol model, and shows the first transition
of the control flow in Figure 5.11. The transition is connected to a place annotated
with the <<invoke>> pragmatic, indicating that the event takes a parameter of
the type NodexPacket. The Abstract Pattern of Figure 5.12 shows the general
pattern that will match the Method Invocation Pattern in the code generator.
This pattern can be combined with other patterns, and will be the first pattern
to be matched and generated.

Concrete Pattern Abstract Pattern
| & e
(n, (DEST n2, DIO(rrank,rver))) <<invoke>>
[in}
NodexPacket
Receive DIO

// TOStype return iface.method(inputType inputName)
event void DISDIO.receiveDIO(NodexPacket var_nodexpacket) {

Figure 5.12: Method Invocation Pattern

62

N

5.3.2 Assign Variable Pattern

To make data persistent over multiple steps in the execution of nesC events
and commands, a correspondence between nesC variables and elements in the
CPN model is needed. The Assign Variable Pattern is used for representing data
storage, and the CPN tokens will be stored at places annotated with the <<var>>
pragmatic.

Figure 5.13 shows how the Assign Variable Pattern is matched, and the code
generated from the ReceiveDIO transition from Figure 5.11. The assign variable
pattern is detected by checking that a transition has an arc going to a place
annotated with the <<var>> pragmatic. This pattern will only be matched if the
arc is going from a transition to a place. This pattern will not be matched if the
arc is bidirectional.

Concrete Pattern Abstract Pattern

(n, (DEST n2, DIO(rrank,rver)))
@4 Receive DIO @4

// var = value;
packet = var_nodexpacket;

Figure 5.13: Assign Variable Pattern

5.3.3 Interface Invoke Pattern

The Interface Invoke Pattern provides a way to describe TinyOS interface interac-
tion in CPN models. We have introduced two CPN ML functions. A function for
describing TinyOS commands, call (commandName, parameter), and a function
for describing events, signal (eventName, parameter). The first argument is
the name of the interface command or event, and the second argument is the
parameter. The parameter can be empty to indicate that the interface invocation
takes no parameters.

Figure 5.14 shows an example of the Interface Invoke Pattern of a command. The
getState command is invoked without a parameter, and the Interface Invoke
Pattern is matched if the transition have an outgoing arc inscribed with the
call or signal ML function. The transition has to have an outgoing arc that is
connected to a place annotated with the <<interface>> pragmatic. The Interface
Invoke Pattern will be matched for both TinyOS commands and events.

63

Concrete Pattern Abstract Pattern

call(command_getState, empty) o Stat
P> ate /.
Get State <<interface>> P<<interface>
NetNode

1 // call/signal interface.method(param);
> call State.getState();

Figure 5.14: Call Interface Command pattern

5.3.4 Variable Usage Pattern

To utilize the data stored in places annotated with the <<var>> pragmatic, we
need to introduce a pattern for using the CPN variable representations. The
Variable Usage Pattern is not useful by itself, but by combining it with other
patterns such as the Interface Invoke Pattern it allows us to generate interface
calls with stored variables as parameters.

Concrete Pattern Abstract Pattern

new_state State
<<var>> <<interface>
NetNode NetNode

nn

call(setState, nn)

Set State

1 call State.setState(new_state);

Figure 5.15: Use Variable Pattern

The Variable Usage Pattern is matched if the transition has an bidirectional arc
going into a place annotated with the <<var>> pragmatic. Figure 5.15 shows how
we can combine an interface call with the Variable Usage Pattern to use a stored
value as the parameter of the interface call.

5.3.5 Interface Return Pattern

TinyOS interface calls can return values, and we need a way of representing this
in the CPN model. By using the Interface Invoke Pattern, we can find interaction
with interfaces. By checking for arcs going out from a place annotated with the
<<interface>> pragmatic and into a transition, we can find interface interactions

64

that return values. The return type is determined by the colour set of the place
annotated with the <<interface>> pragmatic. The Interface Return Pattern
can be used together with the Assign Variable Pattern to store the returning

value.

Get State

>

Concrete Pattern

(n2, rank, ver, parent, state)

State

<<interface>>

NetNode

Abstract Pattern

4
l

<interface>

node_state

= call State.getState();

Figure 5.16: Interface Return Pattern

Figure 5.16 shows how the Interface Return Pattern is matched. The Interface
Return Pattern is matched by checking for arcs going from a place annotated
with the <<interface>> pragmatic and to a transition in the control flow. By
combining the interface invoke pattern, the interface return pattern, and the
variable assignment pattern, we can store the returning value of an interface call
to a variable.

The recognition of the patterns described in this chapter is implemented in the
code generator tool we have developed. The installation and usage of the code

generator is described in Appendix D.

65

66

Chapter 6

Application to Roll

In this chapter we look at the steps that are needed to go from the generated code
and to a working network protocol application for the TinyOS platform. We show
how we have taken the application generated by the code generator described in
Chapter 5, and implement a subset of the Roll Protocol based on the generated
nesC code.

6.1 Implementing Network Handlers

To be able to have a working application, we need to implement components for
handling network packets. We organize the generated application in such way
that we have one component for receiving, and one for sending. The component
for receiving network packets has the responsibility of parsing and passing the
packets to the right components.

TinyOS has a set of components that are used for managing network packet
protocols[6]. We use the Receive interface provided by the AMReceiveC component
to receive network packets from neighbouring nodes in the network, and we use
the AMSend interface of the AMSenderC component to broadcast packets to the
network.

6.1.1 The Dispatcher Component

The first step of going from the generated code to a runnable application is to create
the component handling incoming network packets. The dispatcher component
is based on the substitution transition Dispatcher, which is annotated with the
<<component (dispatcher)>> pragmatic in the refined model (Figure 4.14).

67

The dispatcher receives and parses network packets that are represented as the
message_t* TinyOS data structure (Chapter 3.2.1). Based on the result from
parsing the packet, the dispatcher will pass the network packet as a NodexPacket
data structure to the component that should further process it. The dispatcher
uses the Receive interface, and has to implement the receive event.

Figure 6.1 illustrates how the dispatcher can be implemented. Line 1-2 describes
the signature of the Receive.receive event, and Line 4-7 illustrate (in pseudo-
code) how network packets can be passed from the dispatcher and to other
components in the application.

event message_t* Receive.receive(
message_t* msg, void* payload, uint8_t 1) {

NodexPacket packet;

if (...) { signal DAOACK.receiveDAOACK(packet); };
else if (...) { signal DAO.receiveDAO(packet); };

Figure 6.1: AMReceive component - event for receiving network packets

Figure 6.2 shows how we create an instance of the generic AMReceiveC component
with an alias in the application configuration file. We use the alias to connect the
provided receive interface to the dispatch component.

component new AMReceiverC(1) as AMRecC;
DispatcherC.Receive -> AMRecC.Receive;

Figure 6.2: AMReceive component wiring

6.1.2 The NetSend Component

The second step is to implement the NetSendC component which is used by
other components in the application for broadcasting network packets. The
outline of the NetSendC component is generated from the substitution transition
annotated with the <<component (external)>> pragmatic in the refined model.
The NetSendC component is implementing the AMSend interface provided by the
AMSenderC component to broadcast packets. The AMSenderC component comes
with interfaces for managing and sending radio packets. We create an instance of
the AMSenderC component, and wire the provided AMSend interface to the local
AMSend interface of the NetSend component as shown by Figure 6.3. The AMSend

68

N

1

N

interface requires the component using the interface to implement a callback
(sendDone) for the send command. We do not currently check for errors when
sending packets, and the callback for sending packets is left unimplemented.

component new AMSenderC(1) as AMSendC;
NetSend.AMSend -> AMSendC.AMSend;

Figure 6.3: AMSender component wiring

The NetSendC component implements the NetSend interface (Figure 6.4), which
provides components (DIO, DAO and DISDIO in the refined model) with the
possibility of sending packets over the network. This is done by parsing the colour
set representation of the NodexPacket and extracting the required attributes
for creating a message_t data structure that can be sent through the AMSend
interface.

interface NetSend {
event void netsend(NodexPacket packet);

}

Figure 6.4: NetSend interface

Through the implementation of the NetSendC we allow other components to
signal the NetSend.netsend event, which calls the send command of the AMSend
interface. Figure 6.5 shows the outline of the NetSendC component. Line 1-7
illustrate the netsend event that transform the data structure used internally
between the components to the packet structure used by the AMSend interface
for sending packets on the TinyOS platform. Line 8-10 show the unimplemented
callback of the AMSend.send command.

event void NetSend.netsend(NodexPacket packet) {
message_t* msg;
am_addr_t addr;
uint8_t 1len;

call AMSend.send(addr, msg, len);

3

event void AMSend.sendDone(message_t* msg, error_t error) {
// unimplemented callback

}

Figure 6.5: Implementation of the NetSendC component

69

N

By implementing the network handlers, we are able to receive and send network
packets. The dispatcher receives the packets, parses them, and passes them on to
the right components. The components then process the packets, and based on
the payload execute logic. The components are then able to send responses based
on the packets through the NetSend interface of the NetSendC component.

6.2 Implement interfaces for Timed Tasks

The code generator generates an outline of the TimedTaskC component. The
TimedTaskC component contain tasks that should be execute periodically. We
can implement the periodical execution of events by using the TinyOS Timer
interface. We create an instance of the Timer interface for each of the timed tasks
in the application. The timer have an event that will be executed when the timer
is triggered, and this event will post a task to the TinyOS task queue.

To be able to use multiple instances of the Timer interface we give the instance
of the Timer interface unique names in the configuration file, and bind them to
the local interfaces used in the TimedTaskC component. This is illustrated in
Figure 6.6.

components TimedTasksC;

components new TimerMilliC() as TimerO;
TimedTasksC.SendDISReqTimer -> TimerO;
TimedTasksC.Boot -> MainC.Boot;

Figure 6.6: Wiring for the TimedTask component

Figure 6.7 outlines how the SendDISReq task can be implemented using timers.
To initialise the timers we call the startPeriodic command of the implemented
Timer interface. The timers will be configured to execute at an given interval, and
Line 7 shows that the SendDISReqTimer is executed every 10000ms (10 seconds).
When the timer is executed by the TinyOS scheduler the SendDISReqTimer.fired
event of Line 9 will be triggered, and this will in turn post the SendDISReq task
to the TinyOS job queue.

By implementing timers for the TimedTasksC component, we are able to execute

tasks at regular intervals, and this allow us to implement tasks that are periodically
triggered.

70

i module TimedTasksC {
2 uses interface Boot;
3 uses interface Timer<TMilli> as SendDISReqTimer;
o}
implementation {
6 event void Boot.booted() {
7 call SendDISReqTimer.startPeriodic(10000) ;
8 }
9 event void SendDISReqTimer.fired() {
10 post SendDISReqQ);
11 }
12 task void SendDISReq() {
: NodexPacket disc_pack;
14 signal NetSend.netsend(disc_pack);

Figure 6.7: Sample implementation of the TimedTask component
6.3 Porting functions

Some of the functionality of the CPN model is described as CPN ML functions,
and these have to be manually translated to nesC code. To get a working
implementation of the generated application, we have to translate all the used
Standard ML functions to corresponding nesC code.

Figure 6.8 shows the CPN ML function for determining if a node is part of a
DODAG, and Figure 6.9 shows the manually translated nesC version of this
function.

i fun noDodag(parent, rrank, rver) =

2 if ((rver=0) andalso (rrank=0) andalso (parent=0))
then true

4 else false;

Figure 6.8: CPN ML implementation of the noDodag function

71

BOOL noDodag(int parent, int rrank, int rver) {
if (rver == 0 && rrank == 0 && parent == 0) {
return 1;

}

return O;

Figure 6.9: nesC implementation of the noDodag function
6.4 TOSSIM

To be able to test the application locally, we need to have an environment
to simulate nodes in a network. This is done by using the TOSSIM python
framework, which allows us to interact with the generated application. The
TOSSIM framework allow us to configure the network topology where we can
describe the connectivity between the nodes. The first step of simulating a TinyOS
application is to is to initialize the TOSSIM environment and the radio links.

tossim = Tossim([])
radio = t.radio()

The second step is defining the simulation scenario. This is done by defining the
topology, where we can add links between nodes and describe the connectivity for
each link. Figure 6.10 shows how we can a get a representation of the topology
by reading a scenario from file.

with open("topology.txt") as toplogy:
for link in toplogy:
nodel, node2, db = link.split()
radio.add(int (nodel), int(node2), float(db))

Figure 6.10: Setting up the TOSSIM Topology

To make the simulation realistic we can add a random noise to the network by
sampling noise from an actual field study. By doing this we can simulate how the
physical environment (e.g, changes in temperature, weather conditions, etc) can
have an impact on how the network protocol behaves. Figure 6.11 shows how we
add noise to the TOSSIM network model.

TOSSIM allow us to simulate the booting sequence of nodes running the TinyOS
application. After defining the topology, the noise models and the booting
sequences, we are able to simulate network nodes in the TOSSIM TinyOS envi-
ronment. We simulate events in the environment by calling the runNextEvent ()

72

with open("sample-noise.txt", "r") as noise:
for sample in noise:
for node in nodes:
tossim.getNode (node) .addNoiseTraceReading(int (sample))

for node in nodes:
tossim.getNode (node) . createNoiseModel ()

Figure 6.11: Creating noise for the TOSSIM environment

method of the TOSSIM environment. The installation and setup of TOSSIM is
described in Appendix A.

tossim.getNode (1) .bootAtTime (1800009)
tossim.getNode(2) .bootAtTime (2000002)
tossim.getNode(3) .bootAtTime (8008135)
for _ in range(60): tossim.runNextEvent ()

Figure 6.12: Simulating the behaviour of nodes in the network

The generate code outlines the behaviour of the functions, and we are able to
generate most of the application. Going from the generated code and to a working
implementation of the network protocol, we have to translate the functions used
in the CPN model to nesC functions, implement network handlers and implement
the timed tasks. The generated code constitute most of the application, and we
see that that most of the manual implementation of the network handlers can be
reused for other protocols.

73

74

Chapter 7

Conclusions and Future Work

In this thesis we have developed and applied a method for refining CPN network
protocol models, a refinement process that results in a model we can use for
automatically generating code for a corresponding TinyOS network protocol
application. We have created five distinct refinement steps that is used in the
process of refining a CPN model. We refine the model by adding explicit details
to describe the relationship to the TinyOS platform, and by restructuring the
CPN model to better reflect the structure of the TinyOS platform.

We have explored the possibilities of extending the use of pragmatics, and we have
created pragmatics for describing the relationship between CPN concepts and
TinyOS components, interfaces, events and commands. We have also created a set
of pragmatics for describing the internal behaviour of events and commands.

We have created a code generator that uses these pragmatics to generate an outline
of the structure and behaviour of a TinyOS application. We have used pragmatics
in our case study of the Roll Protocol to map the structure and behaviour of the
CPN model to a corresponding TinyOS network protocol application. We have
been able to show a relationship between concepts in CPN models and variables,
method invocations, and the control flow of commands and events in TinyOS
applications.

We will discuss the results and findings of the model refinement process, the
code generator, the generated code, and the manual implementation needed to
run the application on the target platform in greater detail in the sections that
follow.

5

7.1 Model Refinement Process

The model refinement shows that we can take a platform independent model and
by refining it accordingly to the refinement steps we have derived, end up with a
model that we can use for generating platform specific code.

We have successfully used pragmatics to describe the relationship between an
abstract CPN model and the TinyOS platform. We have used pragmatics to
create patterns that can be detected by a code generator, and these patterns are
used to relate CPN concepts to TinyOS structure and behaviour. The original
CPN model was modelled very compactly, and described the behaviour with a
very small set of arcs, transitions and places. This made it hard to clearly identify
the execution flow, and by restructuring the model using a control flow pattern,
we have been able to clearly identify the path of execution. This enabled us to
reason about the corresponding TinyOS behaviour. The CPN model is refined in
such a way that it allow us to generate the structure and the internal behaviour
of the corresponding TinyOS network protocol application.

7.2 Code Generation

The code generator we have created takes a refined CPN model as input, and
generates nesC code for the TinyOS platform. We have looked closer at how
we can recognize structural patterns, and how we can use these patterns to
describe the relationship between a CPN model and the corresponding TinyOS
application.

To be able to generate code based on recognizable patterns, we have annotated
the CPN arcs, substitution transitions and places with pragmatics. By using
pragmatics and changing the structure of the model, we are able to generate nesC
code corresponding to TinyOS wiring, components, interfaces, and headers. The
generated header file contains the translation of all the CPN colour sets, which
are represented as TinyOS data structures.

We have restructured the behaviour of the CPN model to describe a control
flow. By representing the control flow as a graph, we can identify each step of
the execution, and translate it to TinyOS platform specific behaviour. Using
predefined patterns we are able to generate behaviour for method invocation,
variable assignments, interface invocations, interface invocations with variables as
parameters and assigning interface return values to variables.

The case study in this thesis showed that by using a code generator that detects
structural patterns in CPN models, we are able to generate human readable TinyOS
application code. One of the benefits of using a structure-based code generator is

76

the readability of the generated code, and when giving descriptive names to the
CPN colour sets, places and transitions, we end up with generated code that is
very readable. The readability of the generated code makes the application easy
to modify. The current version of the code generator is not able to generate a
complete representation of the CPN model behaviour, and some manual work is
needed for going from generated application to an operational implementation of
the network protocol. To get a runnable application we have to implement the
network dispatcher receiving the packets, the interface for broadcasting packets
to the network, and the timers for executing tasks periodically.

Even though the code generator does not currently generating a complete represen-
tation of the TinyOS Roll Protocol application, we can argue for the importance
of generating readable code. The generated code is very readable, making the
application easy to extend and change. One unresolved issue with the manual
implementation process, is ensuring the correctness of going from the generated
network protocol application to a runnable implementation of it.

7.3 Future Work

Based on the results obtained in this thesis, there are several areas where the
refinement process and the code generation of TinyOS applications could be
explored further.

7.3.1 Automated Testing and Analysis

An area that would have been especially interesting to explore further is the
possibility of automatic test generation. It would also be interesting to look
further into testing to ensure the correctness of the CPN model, and automatic
validation of the correctness for each step of the refinement.

By looking into the generation of automatic test cases for the TOSSIM simulation
tool, it should be possible to generate test cases for the behaviour of the CPN
model that reflects what the behaviour of the completed implementation of the
generated TinyOS application should be. It might be possible to make a test
framework that generates network test cases, runs them through both CPN and
TOSSIM and matching the result of both the platforms. This would give us a way
of ensuring that the result of the manual implementation is correct and matches
the behaviour of the CPN model.

As an exercise of this it would have been interesting to rigorously test the CPN
model by simulating it and match it against the result of the generated TinyOS
application. We could use state space analysis tools to ensure correctness of

7

the CPN model, and possibly use the result of the space analysis to reason
about the generated code. This would give us more confidence in our generated
implementation being correct.

Another aspect that would be interesting to look at is the power consumption of
the generated code. We could run the generated code through the nesc2cpn(7]
program to generate a CPN model, which would allow us to monitor the power
consumption of the generated TinyOS application. By doing this we could reason
about the efficiency of the generated code, and if needed, optimize it for efficiency.
It would be interesting to use the result of this and compare it to the power
consumption of a manual implementation of the protocol.

7.3.2 Improving the Code Generator

The current version of the code generation is a proof of concept and is missing
some features that would have been nice to have in a final product. Currently,
the code generator does not generate the dispatcher, does not include branching
of the control flow and is only able to bind one variable in each step of the control
flow. These limitations with the code generator has not been implemented due to
time constraints. There is no technical reason that prohibits the implementation
of these features.

By looking closer at the process of going from the application to the Roll Protocol
implementation, we see that some of the implementation steps that are done
manually could possibly be automatically generated. The substitution transition
representing the dispatcher in the refined model is structured in such a way that
the enabling of transitions could be translated into switch statements. By looking
closer at the Figure 4.13, we see that each of the arcs correspond to a statement,
and these can be used to generate a switch statement over different cases that
would correspond to passing network packets. The tasks in the TimedTasks
component follow a structure that could possibly allow us to generate the timers
and wiring for each of the tasks.

The code generator does not currently support branching in the control flow.
Implementing branching of the control flow would enable us to describe loops
and conditional statements. These features could be added by implemented a
more advanced graph representing of the control flow, where a node with two or
more outgoing edges in the graph would correspond to a conditional statement
(if, else if, else). If the graph has a cycle, we would assume that this corresponds
to a loop, and nodes with multiple incoming edges would represent the start of a
loop in the control flow. The node representing the loop entry point should also
contain the condition for when the loop should break.

The code generator does not currently ensure that the variables used in the

78

Variable Usage Pattern matches the signature of the interface, and as a result of
this we do not support multiple variable assignments or usages in a single step of
the control flow. This could possibly be solved by matching the types of the CPN
arcs to the places annotated with the <<var>> pragmatic. One unresolved issue
with this is how to handle the variable assignment if multiple variables of the
same type are assigned in one transition. It would be interesting to look into this
issue further and explore the possibilities of using multiple variable assignments
and uses in a single step.

Currently the code generator will only work on a model after all the five refinement
steps have been completed. It would have been nice if the code generator was
able to outline the corresponding code for each of the steps in the refinement.
The code generator could be used to guide the user to what the next steps in
the refinement would be. This improvement to the code generator could also be
used for checking for mistakes in the refinement steps (e.g, unknown pragmatics,
duplicate annotations, etc.).

One possible improvement of the current code generator would be to have it
automatically translate the CPN ML functions into nesC functions. Research has
shown that is possible to translate Standard ML to C[19], and this indicates that
translation of CPN ML functions to nesC functions should be possible.

In this thesis we have shown that we can refine a platform independent CPN
model to better match the structure of a target platform. Refining the CPN
Roll Protocol model has allowed us to generate platform specific code for the
TinyOS platform. We have derived five general steps used in the refinement of
CPN models, and we have successfully shown how we can use pragmatics to
make a CPN model sufficiently detailed to use for code generation for the TinyOS
platform.

79

80

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6

Research approach using prototypes 4
Physical network topology represented as a DODAG 9
Nodes forming a new instance of a DODAG 10
Overview of the CPN-Roll model 11
CPN-Roll Protocol Module Hierarchy 11
CPN-Roll Protocol Module 12
CPN colour set representing a state in the Roll Protocol 13
CPN color sets for Node, Rank and DodagVersionNumber 13
CPN color set for a generic RPL network packet 14
CPN color sets for the different RPL packets 14
The DIS DIO CPN Module 15
CPN-ML source code for Objective Function Zero 16
The DAO CPN Module 17
The DAOACK CPN Module 18
The Startup and Timeout CPN Module. 19
CPN-Roll Network Model 20
State diagram for the Roll Protocol 21
Simplified TinyOS implementation of the Roll Protocol 24
Source code of DataTypes.h, 25
Ported source code of RPLProtocolC component 26
Source code of RPLPacket component 27
Source code of NODE interface 28
Source code of RPLProtocolAppC.nc 28
Snippet of the RPLProtocolC.nc component showing debug messages 32
Source code of the python simulation script 33
Roll Protocol Module - Original 37
Roll Protocol annotated with TinyOS interfaces and components . 39
Generated TinyOS Configuration Code 40
Roll Protocol ambiguities resolved 41
Generated component with multiple usage of a single interface . . 42
Sample of generated nesC header file and corresponding colour sets 43

81

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

DISDIO Module - Original
DISDIO Module - refined structure
Generated nesC Interfaces with Types
Roll Protocol Module - Timed tasks component refinement
Generated TimedTasks component
Roll Protocol Module - Startup component refinement
Roll Protocol Module - Dispatch component refinement
Roll Protocol Module - Component Refinement
Refined CPN model of the Receive DIO event
Generated Behaviour of the receiveDIO Event

Assumptions of primitive header types
Translation of variables and arrays
Translation of enums
Translation of products (data structures)
Translation of unions L.
Interface Component Pragmatic
Code for the Generated Interface
Component Patterns,
Generated TinyOS component
Generated TinyOS wiring L.
Receive DIO model behaviour
Method Invocation Pattern.
Assign Variable Pattern
Call Interface Command pattern
Use Variable Pattern
Interface Return Pattern

AMReceive component - event for receiving network packets

AMReceive component wiring L.
AMSender component wiring
NetSend interface
Implementation of the NetSendC component
Wiring for the TimedTask component
Sample implementation of the TimedTask component
CPN ML implementation of the noDodag function.
nesC implementation of the noDodag function
Setting up the TOSSIM Topology
Creating noise for the TOSSIM environment
Simulating the behaviour of nodes in the network

82

Bibliography

[1] Routing over low power and lossy networks.
https://datatracker.ietf.org/wg/roll/charter, May 2013.

[2] Tinyos - documentation wiki.
http://docs.tinyos.net, 2013.

[3] Tinyos - documentation wiki.

http://docs.tinyos.net /tinywiki/index.php/tinyos_network _protocol working_group,

2013.

[4] Tinyos - enhancement proposals.
http://docs.tinyos.net /tinywiki/index.php/teps, 2013.

[5] Tinyos - platform hardware.
http://docs.tinyos.net /tinywiki/index.php/platform_hardware, 2013.

[6] Tinyos packet protocols.
http://www.tinyos.net/tinyos-2.x/doc/html/tep116.html, May 2013.

[7] Antonio Damaso, Davi Freitas, Nelson Rosa, Bruno Silva, and Paulo Maciel.
Evaluating the power consumption of wireless sensor network applications
using models. Sensors, 13(3):3473-3500, 2013.

[8] Kristian Leth Espensen and Mads Keblov Kjeldsen. Automatic code gener-
ation from process-partitioned coloured petri net models. Master’s thesis,
Department of Computer Science, University of Aarhus, 2008.

[9] A. Conta et.al. Internet control message protocol (icmpv6) for the internet
protocol version 6 (ipv6) specification (rfc 4443). Technical report, Network
Working Group, IETF, 2006.

[10] Ed T. Winter et.al. Ipv6 routing protocol for low power and lossy networks.
Technical report, The Internet Engineering Task Force, 2012.

[11] Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Springer, 1 edition, 2009.

[12] S. KIm, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon.

83

[18]

[19]

[20]

[21]

Health monitoring of civil infrastructures using wireless sensor networks. In
IPSN ’07: Proceedings of the Sizth International Conference on Information
Processing in Sensor Networks, 2007.

Lars M. Kristensen, Peter Mechlenborg, Lin Zhang, Brice Mitchell, and
Guy E. Gallasch. Model-based development of a course of action scheduling
tool. Int.J.Softw. Tools Technol. Transf., pages 10(1):5-14, 2007.

Mads K. Kjeldsen Kristian L. Espensen and Lars M. Kristensen. Towards
modelling and validation of the dymo routing protocol for mobile ad-hoc
networks.

Philip Levis. TinyOS Programming. 2006.

J. Liu, N. Priyantha, F. Zhao, C.-J. M. Liang, and Q. Wang. Towards
discovering data center genome using sensor nets. In EmNets ‘08: Proceedings
of the Fifth Workshop on Embedded Networked Sensors, 2008.

Kjeld Hoyer Mortensen. Automatic code generation method based on coloured

petri net models applied on an access control system. In Proceeding of
ICATPN °00, pages 367-386, 2000.

Kent Inge Simonsen, Lars Michael Kristensen, and Ekkart Kindler. Code
Generation for Protocols from CPN models Annotated with Pragmatics. IMM-
Technical Report-2013. Technical University of Denmark, 2013.

David Tarditi, Peter Lee, and Anurag Acharya. No assembly required:
Compiling standard ml to c¢. Technical report, ACM Letters on Programming
Languages and Systems, 1990.

Ed. P. Thubert. Objective function zero for the routing protocol for low-power
and lossy networks (rpl). Technical report, The Internet Engineering Task
Force, 2012.

M. Westergaard. Access/CPN 2.0: A High-Level Interface to CPN Models.
In Proc. of ICATPN’11, volume 6709 of LNCS, pages 328-337. Springer,
2011.

84

Appendix A

Installing TinyOS and running
nesC applications

A.1 Installing TinyOS

This install guide targets Debian based Linux distributions, and is based on
the official install that can be found on http://docs.tinyos.net/tinywiki/
index.php/Installing_Tiny0S. The official guide also covers other platforms
and operating systems.

Firstly we need to install a compatible Linux distribution. Xubuntu is a lightweight
alternative. If we do not wish to install Linux natively we can run in a virtual
environment, this can be done by install VirtualBox or VMWare. After the Linux
distribution is set up we need to install the TinyOS packages. Add the TinyOS
package repository and install it using the Ubuntu package-manager.

1 - Add the source for the debian packages

#/etc/apt/sources.list
deb http://tinyos.stanford.edu/tinyos/dists/ubuntu lucid main

2 - Install the software

sudo apt-get update
sudo apt-get install tinyos-2.1.x%

3 - Set up the bash environment to include the TinyOS environment

export MAKERULES=/opt/tinyos-2.1.2/support/make/Makerules
export TOSDIR=/opt/tinyos-2.1.2/tos

4 - Install the python development libraries

85

http://docs.tinyos.net/tinywiki/index.php/Installing_TinyOS
http://docs.tinyos.net/tinywiki/index.php/Installing_TinyOS

sudo apt-get install python2.7-dev

A.2 Running nesC applications

1 - Compile
make micaz sim
2 - Running simulation

python sim.py # where sim.py is a python2 simulation case file

86

Appendix B

Roll Protocol nesC example

Makefile

COMPONENT=RPLProtocolAppC
include $(MAKERULES)

DataTypes.h

#ifndef DATATYPES_H_INCLUDED
#define DATATYPES_H_INCLUDED

typedef enum {
DAOpack
DAOACKpack
DIOpack
DISpack

} PacketType;

-

I n
W N -

-

typedef enum {
INITNODE
NODE
JOINING
JOINED
WAITING
ROOT =
INITROOT
ROOTJOINED

} State;

- -

-

o
N O U W PO

-

-

-

typedef struct {

87

N

uint8_t source;

uint8_t dest;

PacketType packetType;
} Packet;

typedef struct {
uint8_t id;
uint8_t rank;
uint8_t dodagN;
uint8_t parentld;
State state;

} NetNode;

#tendif

RPLProtocolAppC.nc

configuration RPLProtocolAppC { }
implementation {
components MainC, RPLProtocolC;
components DAQOC;
components DIOC;

RPLProtocolC.Boot -> MainC.Boot;
RPLProtocolC.DAO -> DAOC.RPLPacket;
RPLProtocolC.DI0O -> DIOC.RPLPacket;

DAOC.DODAG -> RPLProtocolC.DODAG;

RPLProtocolC.nc

#include "DataTypes.h"

module RPLProtocolC {
provides interface DODAG;

uses interface Boot;

uses interface RPLPacket as DAO;
uses interface RPLPacket as DIO;

implementation {
NetNode node;

88

command State DODAG.getState() { return node.state; }
command void DODAG.setState(State state) {
dbg("dbg", "%s RPL | changeState %i -> %i\n",
sim_time_string(), node.state, state);
node.state = state;

event void Boot.booted() {
// debug
NetNode nnode = { .id = 1, .rank = 0, .dodagN = O,
0, INITNODE };

Packet packet = { .source = 2, .dest = 1, .packetType = DAOpack

};

dbg("dbg", "%s RPL | Application booted.\n", sim_time_string());

node = nnode;
call DAO.receive(packet);

event void DAO.send(Packet packet) {
dbg("dbg", "%s RPL | DAO.send(Packet packet)\n",
sim_time_string());

event void DIO.send(Packet packet) {
dbg("dbg", "%s RPL | DAO.send(Packet packet)\n",
sim_time_string());

.parentId =

DAOC.nc

#include "DataTypes.h"

module DAOC {
provides interface RPLPacket;
uses interface DODAG;

implementationd{
command void RPLPacket.receive(Packet p) {
State state = call DODAG.getState();

89

V]

dbg("dbg", "%s DAO | RPLPacket.receive(..) with state %i\n",
sim_time_string(), state);

call DODAG.setState(JOINED) ;

signal RPLPacket.send(p);

DIOC.nc

#include "DataTypes.h"

module DIOC {
provides interface RPLPacket;

}
implementation{
command void RPLPacket.receive(Packet p) {
dbg("Boot", "%s | RPLPacket.receive(..)\n", sim_time_string());
signal RPLPacket.send(p);
}
}
DODAG.nc

#include "DataTypes.h"
interface DODAG {

command State getState();
command void setState(State state);

RPLPacket.nc

#include "DataTypes.h"

interface RPLPacket {
command void receive(Packet packet);
event void send(Packet packet);

rplsim.py

from TOSSIM import *
import sys

90

log = open("log.txt","w")

t = Tossim([])
t.setTime (0)
t.addChannel("dbg", log)

m0 = t.getNode(0)
#ml = t.getNode(1)
m0.bootAtTime (300)
#ml.bootAtTime (3000)

for _ in range(5):
t.runNextEvent ()

91

92

Appendix C

Generated Code

// Code Generating for ’RollProtocol’ at 25.05.2013 02:43:19

// Confugration file generated at 25.05.2013 02:43:19
configuration ConfigurationApp {}
implementation {

components DISDIOC;

components StartupC;

components DAQOC;

components DAOACKC;

components StateC;

components TimedTasksC;

components NetSendC;

DISDIOC.State -> StateC.State;
StartupC.State —> StateC.State;
DAOC.State -> StateC.State;
DAOACKC.State —-> StateC.State;
TimedTasksC.State -> StateC.State;
NetSendC.NetSend -> DISDIOC.NetSend;

// Interface file ’State’ generated at 25.05.2013 02:43:19
#include "global.h"
interface State {

event void receiveDIO(NodexPacket nodexpacket);

event void receiveDIS(NodexPacket nodexpacket) ;

// Interface file ’NetSend’ generated at 25.05.2013 02:43:19
#include "global.h"

93

interface NetSend {

¥

// Interface file ’DADACK’ generated at 25.05.2013 02:43:19
#include "global.h"
interface DAOACK {

event void receiveDAOACK(NodexPacket nodexpacket) ;

// Interface file ’DAD’ generated at 25.05.2013 02:43:19
#include "global.h"
interface DAO {
event void receiveDAO(NodexPacket nodexpacket);
event void receiveDAOwWACK(NodexPacket nodexpacket);

// Interface file ’DISDIO’ generated at 25.05.2013 02:43:19
#include "global.h"
interface DISDIO {

event void receiveDIO(NodexPacket nodexpacket);

event void receiveDIS(NodexPacket nodexpacket) ;

// Component DISDIOC.nc at 25.05.2013 02:43:19
module DISDIOC {

provides interface NetSend;

uses interface State;

uses interface DISDIO;
}

implementation {

event void DISDIO.receiveDIO(NodexPacket var_nodexpacket) {
NetNode new_state;
NetNode node_state;
NodexPacket packet;

packet = var_nodexpacket;
node_state = call State.getState();
new_state = objectiveFunction(...);
call State.setState(new_state);

event void DISDIO.receiveDIS(NodexPacket var_nodexpacket) {
NetNode node_state;

94

88

89

90

91

NodexPacket packet;

packet = var_nodexpacket;

node_state = call State.getState();
signal NetSend.netsend(node_state);

// Component StartupC.nc at 25.05.2013 02:43:19

module StartupC {
uses interface State;

¥

implementation {

}

// Component DAOC.nc at 25.05.2013 02:43:19

module DAOC {
provides interface NetSend;
uses interface State;
uses interface DAO;

}

implementation {

event void DAO.receiveDAO(NodexPacket var_nodexpacket) {

NodexPacket packet;

packet = var_nodexpacket;

event void DAO.receiveDAOWACK (NodexPacket var_nodexpacket) {

NetNode node_state;
NodexPacket packet;

packet = var_nodexpacket;

node_state = call State.getState();
signal NetSend.netsend(node_state);

// Component DAOACKC.nc at 25.05.2013 02:43:19

module DAOACKC {
uses interface State;

95

uses interface DAOACK;

¥

implementation {

event void DAOACK.receiveDAOACK (NodexPacket var_nodexpacket) {

NetNode new_state;
NetNode node_state;
NodexPacket packet;

packet = var_nodexpacket;
node_state = call State.getState();

// Component StateC.nc at 25.05.2013 02:43:19
module StateC {

provides interface State;
}

implementation {

¥

// Component TimedTasksC.nc at 25.05.2013 02:43:19
module TimedTasksC {

provides interface NetSend;

uses interface State;
}

implementation {

task void <<unknown>>.SendDISReq() {
NodexPacket disc_pack;
NetNode node_state;

node_state = call State.getState();
signal NetSend.netsend(disc_pack);

task void <<unknown>>.SendDAO() {
NodexPacket disc_pack;
NetNode node_state;
INT enable_ack;

call State.getState();
node_state = nn;

96

166 disc_pack = call State.setState(node_state);
167 call State.setState(node_state);

168 }

169

170 task void <<unknown>>.IncreaseDODAG() {

171 NetNode node_state;

173 node_state = call State.getState();
174 call State.setState(node_state);

178 task void <<unknown>>.Timeout() {
179 NetNode node_state;

181 node_state = call State.getState();
182 call State.setState(node_state);

183 }

184

185}

157 // Component NetSendC.nc at 25.05.2013 02:43:19
1ss module NetSendC {

189 uses interface NetSend;

190 }

191 implementation {
193 }

105 // Header file ’global.h’ generated at 25.05.2013 02:43:19
106 #ifndef GLOBAL_H_INCLUDED
107 #define GLOBAL_H_INCLUDED

100 #define ARRAY_DEFAULT_SIZE 15

200 typedef int unit;

202 typedef char string;

203 typedef int INT;

204 typedef INT DodagVerNum;
205 typedef unit UNIT;

206 typedef INT Rank;

207 typedef int Nodes;

208 typedef char null;

200 typedef char ALL;

210 typedef char DEST;

97

typedef union {
char ALL;
Nodes DEST;
} Dest;
typedef char DIS;
typedef string STRING;
typedef STRING Data;
typedef int Options;
typedef struct {
Rank rank_val;
DodagVerNum dodagvernum_val;
Data data_val;
Options options_val;
} DAOpack;
typedef char DAO;
typedef struct {
Rank rank_val;
DodagVerNum dodagvernum_val;
} DAOACKpack;
typedef char DAOACK;
typedef struct {
Rank rank_val;
DodagVerNum dodagvernum_val;
} DISResp;
typedef char DIO;
typedef union {
char DIS;
DAOpack DAO;
DAOACKpack DAOACK;
DISResp DIO;
} PacketType;
typedef struct {
Dest dest_val;
PacketType packettype_val;
} Packet;
typedef struct {
Nodes nodes_val;
Packet packet_val;
} NodexPacket;
typedef NodexPacket netReceive;
typedef char VOID;
typedef VOID param_getState;
typedef VOID return_netSend;
typedef enum {
NODE = 0,

ROOT = 1,
JOINED = 2,
JOINING = 3
ROOTJOINED
WAITING = 5,
INITROOT = 6,
INITNODE = 7,
} STATE;
typedef STATE return_getState;
typedef bool BOOL;
typedef BOOL ConfigParam;
typedef INT event_booted;
typedef NodexPacket event_send;
typedef VOID return_receive;
typedef VOID return_setState;
typedef NodexPacket param_netSend;
typedef INT ID;
typedef event_booted interface_boot;

o~

4,

typedef Nodes NodeList[ARRAY_DEFAULT_SIZE];

typedef enum {
UP = 0,
DOWN = 1,
} LinkStatus;
typedef struct {
Nodes nodes_val;
Nodes nodes_val2;
LinkStatus linkstatus_val;
} NodexNodexLinkStatusxLinkType;
typedef NodexNodexLinkStatusxLinkType
TopologyChanges [ARRAY_DEFAULT_SIZE] ;
typedef struct {
return_netSend return_netsend_val;
param_netSend param_netsend_val;
} netSend;
typedef union {
char netSend;
char netReceive;
} interface_Network;
typedef struct {
INT int_val;
STATE state_val;
} param_setState;
typedef struct {
return_setState return_setstate_val;
param_setState param_setstate_val;

99

} setState;
typedef struct {
return_getState return_getstate_val;
param_getState param_getstate_val;
} getState;
typedef union {
char setState;
char getState;
} interface_State;
typedef char receiveDIS;
typedef char receiveDIO;
typedef union {
char receiveDIS;
char receiveDIO;
} interface_DISDIO;
typedef struct {
NodexPacket nodexpacket_val;
Nodes nodes_val;
} param_receive;
typedef struct {
return_receive return_receive_val;
param_receive param_receive_val;
} command_receive;
typedef union {
char command_receive;
char event_send;
} interface_RPLPacket;
typedef char receiveDAQ;
typedef char receiveDAOWACK;
typedef union {
char receiveDAOQ;
char receiveDAOwACK;
} interface_DAOD;
typedef char netsend;
typedef union {
char netsend;
} interface_NetSend;
typedef char receiveDAOACK;
typedef union {
char receiveDAQACK;
} interface_DAOACK;
typedef struct {
Nodes nodes_val;
NodelList nodelist_val;
} Topology;

100

typedef struct {
Nodes nodes_val;
Rank rank_val;
DodagVerNum dodagvernum_val;
Nodes nodes_val2;
STATE state_val;
} NetNode;
#endif

101

102

Appendix D

Using the Code Generator

The executable Java file for the code generator can found online at
http://veiset.org/master/binaries/.

The JAR contain the Eclipse Modelling Framework (EMF) and Access/CPN
library used by the code generator. To run the code generator, we simply execute
the JAR file with parameters for input and output.

java -jar codegen-1.0.jar /home/vz/models/refined.cpn /home/vz/gen/

The line above takes a CPN model as input (/home/vz/models/refined.cpn)
and outputs the corresponding nesC code to the specified target directory
(/home/vz/gen/).

The code generator will generate:

Description Filename

A configuration file ConfigurationApp.nc
A nesC makefile Makefile

A header file mapping colour sets global.h

A set of components e.g, DISDIO, DAD

A set of corresponding interfaces e.g, DISDIOC, DAQOC

103

http://veiset.org/master/binaries/

	Introduction
	Coloured Petri Nets and Code Generation
	Model Refinement
	Thesis Goal and Results
	Thesis Outline

	Coloured Petri Nets and the Roll Protocol
	Roll protocol
	Overview

	The CPN Roll Protocol Model
	Roll Protocol Module
	Network module

	The nesC Programming Language and the TinyOS Platform
	The nesC Programming Language
	Overview
	Type Declarations
	Program Control-flow
	Interfaces
	Wiring and Configurations

	The TinyOS Platform
	APIs
	TOSThreads
	TOSSIM

	CPN Model Refinements
	Model Refinement Overview
	Step 1: Component Architecture
	Step 2: Resolving Interface Conflicts
	Step 3: Component and Interface Signatures
	Step 4: Component Classification
	Step 5: Internal Behaviour
	Discussion

	Code Generation
	The Code Generator
	TinyOS Application Structure
	Header file
	Interfaces
	Components
	Wiring

	Behaviour
	Method Invocation Pattern
	Assign Variable Pattern
	Interface Invoke Pattern
	Variable Usage Pattern
	Interface Return Pattern

	Application to Roll
	Implementing Network Handlers
	The Dispatcher Component
	The NetSend Component

	Implement interfaces for Timed Tasks
	Porting functions
	TOSSIM

	Conclusions and Future Work
	Model Refinement Process
	Code Generation
	Future Work
	Automated Testing and Analysis
	Improving the Code Generator

	Installing TinyOS and running nesC applications
	Installing TinyOS
	Running nesC applications

	Roll Protocol nesC example
	Generated Code
	Using the Code Generator

