HØGSKOLEN I BERGEN
Avdeling for ingeniørutdanning

EKSAMEN I : FOA 052 Kjemi og miljø (10 studiepoeng)

KLASSE : Alle (Grunnlagsfag)

DATO : Tirsdag 3. desember 2013

ANTALL OPPGAVER: 4 oppgaver

ANTALL SIDER: 7 sider (inkludert forside og vedlegg)

ANTALL VEDLEGG: 2 sider

HJELPEMYDLER:
Kalkulator
Det periodiske system
Paul T. Cappelen, Kåre P. Dalen, Kåre Frolich Hanssen, Lars Roseng og Stein Tryti: Tabeller og formelsamling

TID: 0900 – 1300 (4 timer)

MÅLFORM: Bokmål

FAGLÆRER: Kari Grete Nordli Børve

MERKNADER: Alle oppgavene teller likt.
Oppgave 1.

a)
i) Hva kjennetegner følgende typer kjemisk binding:
 - Polar kovalent binding
 - Metallbinding
 Bruk gjerne eksempler.

ii) Forklar følgende begrep:
 - Halogener
 - Lewisstruktur
 - Elektronegativitet

b) Sveisegass, acetylen C_2H_2 (kjemisk navn: etyn), kan produseres etter følgende kjemiske reaksjon:

 \[\text{CaC}_2(s) + 2\text{H}_2\text{O}(l) \rightarrow \text{C}_2\text{H}_2(g) + \text{Ca(OH)}_2(aq) \]

i) Regn ut massen (i kg) av CaC_2 (kalsiumkarbid) som går med for å produsere 7,00 kg med sveisegass, C_2H_2.

ii) Hvor stort volum (i liter) utgjør denne gassmengden ved normaltilstand, NTP?

iii) Hvor stort volum (i liter) utgjør gassen ved et trykk på 15,0 atm når temperaturen er 15,0 °C?

c) Skriv formler for følgende uorganiske forbindelser:

1) fosforsyre 2) ammoniakk 3) kalsiumhydrogenkarbonat

Skriv strukturformler for følgende organiske forbindelser:

4) 1-heksanol 5) metanal (også kalt formaldehyd)

Skriv korrekte navn på følgende uorganiske og organiske forbindelser:

6) N_2O_3 7) Cu_2O 8) K_2S

9) \[\text{CH}_3\text{CH}_2\text{CH}_2\text{Cl} \]

10) \[\text{CH}_3\text{CH}_2\text{CH}_3 \]
Oppgave 2.

a)
En kommersiell metode for produksjon av metanol er hydrogenering av karbonmonoksid. Dette skjer ved følgende likevektsreaksjon:

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g) + 91\text{kJ/mol}$$

i) Er denne reaksjonen eksoterm eller endoterm? Begrunn svaret.

En på forhånd tom, lukket beholder med volum $V = 1.50\ \text{liter}$ fylles med 0,150 mol $CO(g)$ og 0,300 mol $H_2(g)$. Temperaturen er 500K.

Etter at likevekt er innstilt er det 0,031 mol $CH_3OH(g)$ i beholderen.

ii) Regn ut konsentrasjonene av gassene $CO(g)$, $H_2(g)$ og $CH_3OH(g)$ i likevektsblandingen.

iii) Bestem likevektskonstanten K_c for reaksjonen.

iv) Bruk le Chateliers prinsipp til å vurdere om mengden produsert metanol øker eller avtar dersom:
 - Vi reduserer volumet slik at trykket øker (ved konstant temperatur).
 - Vi øker temperaturen (ved konstant volum).
 - Vi tilsetter mer hydrogengass til blandingen.
 Begrunn svarene.

b)
Den elektrokjemiske spenningsrekken angir reduksjonspotensialet (E_{red}) for en del kjemiske halvreaksjoner ved 25 °C.

Vi har et system der jern (Fe) korroderer i nøytralt/basisk vannmiljø på grunn av oksygen i vannet. Følgende redoksreaksjon skjer:

$$2Fe(s) + O_2(g) + 2H_2O(l) \rightarrow 2Fe^{2+}(aq) + 4OH^-(aq)$$ (1)

i) Skriv opp halvreaksjonene for oksidasjon og reduksjon i dette systemet. Forklar hva som blir oksidert og hva som blir redusert.

ii) Vis at vi fra halvreaksjonene i forrige punkt kan komme fram til reaksjon (1) over.

iii) Regn ut potensialet for reaksjon (1) ved normalbetingelser.

iv) Hvorfor kan vi konkludere med at reaksjon (1) er en spontan reaksjon i den retningen reaksjonen står?
c) Vi har følgende syrer:
Salpetersyre (HNO₃), salpetersyrling (HNO₂), og eddiksyre (CH₂COOH).

i) Hvilke ioner danner hver av disse syrene i vannløsning?
ii) Hvilken syre er den sterkste og hvilken er den svakest? Begrunn svarene.
iii) Bestem pH i en 0,10 M løsning av salpetersyre.
iv) 50ml av en 0,10M løsning av HNO₃ blandes med 15ml av en 0,25M KOH-løsning.
 Bestem pH i denne blandingen.

Oppgave 3.

a) i) Hvilke gasser blir dannet ved:
 • nedbrytning av plantemateriale med oksygen til stede (aerob nedbrytning).
 • nedbrytning av plantemateriale uten oksygen til stede (anaerob nedbrytning).

ii) Sammen med fosfor er nitrogen det grunnstoffet som er viktigst for primerproduksjon dvs. plantevekst. Det meste av nitrogenet tar plantene opp som nitrat, NO₃⁻.
 • Lag en oversikt over hvilke naturlige og antropogene kilder som finnes for tilførsel av næringssalitet nitrat, NO₃⁻ til vannmiljø/fjordsmonn? Ta gjerne utgangspunkt i nitrogenets kretsløp.

b) Utslipp av metaller til vannmiljø fra prosessindustri skal ifølge forurensningsloven ikke overstige gittegrenseverdier, spesielt fastsatt for hvert enkelt metall. Avløpsvannet renses ved at metallet felles ut som tungt løselig hydroksid i basisk løsning.

I denne oppgaven ser vi på utslipp av sink til vannmiljø. Maksimum tillatt utslipp av sink er 1,0 mg/liter.
Etter behandling med base antar vi at avløpsvannet er mettet med sinkhydroksid, Zn(OH)₂:

\[\text{Zn(OH)₂(s)} \leftrightharpoons \text{Zn}^{2+}(aq) + 2\text{OH}^-(aq) \]

i) Sett opp uttrykket for løselighetsproduktet, \(K_{sp}\) til Zn(OH)₂ samt tallverdien for \(K_{sp}\) ved 25°C.
ii) Regn ut hvor mye sinkioner (mg/l) som er igjen i avløpsvannet etter rensing når vannet har pH = 8,5.
 Molmassen til Zn²⁺: \(M_m(Zn^{2+}) = 65,39 \text{ g/mol}\)
 iii) Gi også konsentrasjonen av sinkioner i avløpsvannet i ppm.
 Vi antar at tettheten til vannet er 1,0 kg/liter.
Eksamen i FOA052 Kjemi og miljø
Avdeling for Ingeniørutdanning
Tirsdag 3. desember 2013

c)
i) Hva er ozonlaget og hvilken funksjon har det?
ii) Hvordan blir ozon naturlig spaltet og dannet i ozonlaget?
iii) KFK-forbindelser var tidligere vanlig i bruk.
 • Hva står KFK for?
 Disse forbindelsene er vanligvis svært stabile men blir brutt ned i stratosfåeren og kloratomer blir da frigjort. De frie kloratomene er svært reaktive og setter i gang en katalytisk nedbrytning av ozon.
 • Forklar ved hjelp av reaksjonslikninger hvordan denne nedbrytningen skjer.

Oppgave 4.
a)
i) Hvilke 3 egenskaper karakteriserer en miljøgift?
ii) Gjør rede for de mest vanlige uorganiske og organiske miljøgiftene.
iii) Hvilke skadevirkninger kan miljøgifter gi på levende organismer?

b)
SO₂ er et surt oksid som dannes blant annet ved forbrenning av fossilt brensel og er en av kildene til sur nedbør. Oksidet kan fjernes fra røykgassen i en gassvasker (scrubber) med basisk vaskevann. Vanligvis blir kalkstein (CaCO₃) tilsatt som base.

i) Gjør rede for hvordan en gassvasker virker. Tegn gjerne figur.

ii)
 • Beskriv prosessen hvor svoveldioksid fjernes fra røykgassen i en gassvasker og vis de kjemiske reaksjonene. Start med reaksjonen mellom SO₂(g) og CaCO₃(aq).
 • Hva er et vanlig navn på sluttproduktet i denne prosessen?
 Tegn gjerne figur.

c)
Hva menes med begrepene *passiv soloppvarming* og *aktiv solvarme*?
Gjør rede for hvordan solenergi best mulig kan utnyttes i boliger til *passiv soloppvarming* og til *aktiv solvarme*.

GASSER

Ideell gassligning: \[p \cdot V = n \cdot R \cdot T \]

\[\begin{align*}
 p &: \text{Trykk (atm)} \\
 V &: \text{Volum (l)} \\
 n &: \text{Molmengde (mol)} \\
 T &: \text{Temperatur (K)} \\
 R &: \text{Gasskonstant}
\end{align*} \]

\[T = (t \, (^{\circ}C) + 273,15) \, K \]

\[R = 0,08206 \left(\frac{J \cdot \text{atm}}{K \cdot \text{mol}} \right) \] eller \[R = 8,3144 \left(\frac{J}{K \cdot \text{mol}} \right) \]

Av dette følger: \[p = \frac{n}{V} \cdot R \cdot T = \left[X \right] \cdot R \cdot T \]

der \[\left[X \right]: \text{Konsentrasjon (M)} \]

Gassblanding: \[n_{\text{tot}} = n_1 + n_2 + n_3 + \ldots \]

Alle gassmolekylene tar i bruk/brer seg over det samme (tilgjengelige) volumet (totalvolumet): \[V = V_{\text{tot}} = V_1 = V_2 = V_3 \ldots \]

Partialtrykk: Deltrykket av den enkelte gass beregnet som om den var alene: \[p_i = \frac{n_i \cdot R \cdot T}{V} \]

Daltons lov: Totaltrykket i en gassblanding er lik summen av deltrykkene til gassene i blandingen

\[p_{\text{Tot}} = \frac{n_{\text{tot}} \cdot R \cdot T}{V} = \frac{n_1 \cdot R \cdot T}{V} + \frac{n_2 \cdot R \cdot T}{V} + \frac{n_3 \cdot R \cdot T}{V} + \ldots = p_1 + p_2 + p_3 + \ldots \]

Avogadros lov: Like volumer av forskjellige gasser inneholder like mange atomer/molekyler ved samme trykk og temperatur

Normaltilstand (NTP):

\[\begin{align*}
 t &= 0 \, ^{\circ}C \quad (273,15 \, K) \\
 p &= 1 \, \text{atm}
\end{align*} \]

Molart volum av ideal gass ved NTP: \[V_0 = 22,414 \cdot 10^{-3} \frac{m^3}{mol} \] eller \[V_0 = 22,414 \frac{l}{mol} \]
VEDLEGG 2

ELEKTRONEGATIVITET

Elektronegativitetsverdier X for ulike atomer:

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>Be</th>
<th>B</th>
<th>C</th>
<th>N</th>
<th>O</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>1,0</td>
<td>1,5</td>
<td>2,0</td>
<td>2,5</td>
<td>3,0</td>
<td>3,5</td>
<td>4,0</td>
</tr>
<tr>
<td>Na</td>
<td>0,9</td>
<td>1,2</td>
<td>1,5</td>
<td>1,9</td>
<td>2,1</td>
<td>2,5</td>
<td>3,0</td>
</tr>
<tr>
<td>K</td>
<td>0,8</td>
<td>1,0</td>
<td>1,6</td>
<td>2,0</td>
<td>2,0</td>
<td>2,4</td>
<td>2,9</td>
</tr>
</tbody>
</table>

Bindingskarakter som følge av forskjell i elektronegativitet ΔX mellom to atomer:

<table>
<thead>
<tr>
<th>ΔX</th>
<th>0,1</th>
<th>0,2</th>
<th>0,3</th>
<th>0,4</th>
<th>0,5</th>
<th>0,6</th>
<th>0,7</th>
<th>0,8</th>
<th>0,9</th>
<th>1,0</th>
<th>1,1</th>
<th>1,2</th>
<th>1,3</th>
<th>1,4</th>
<th>1,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>% ioniakarakter</td>
<td>0,5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>19</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td>34</td>
<td>39</td>
<td>43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΔX</th>
<th>1,6</th>
<th>1,7</th>
<th>1,8</th>
<th>1,9</th>
<th>2,0</th>
<th>2,1</th>
<th>2,2</th>
<th>2,3</th>
<th>2,4</th>
<th>2,5</th>
<th>2,6</th>
<th>2,7</th>
<th>2,8</th>
<th>2,9</th>
<th>3,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>% ioniakarakter</td>
<td>47</td>
<td>51</td>
<td>55</td>
<td>59</td>
<td>63</td>
<td>67</td>
<td>70</td>
<td>74</td>
<td>76</td>
<td>79</td>
<td>82</td>
<td>84</td>
<td>86</td>
<td>88</td>
<td>89</td>
</tr>
</tbody>
</table>

Når ΔX > 1,7 (som tilsvarer mer enn 51% ioniakarakter) regnes bindingen som ionibinding.

NERNST LIGNING

\[E = E^0 - \frac{0.059}{n} \cdot \log Q_C \]

der \[E^0 \] er potensialet ved normalbetingelser

\[\begin{cases} t = 25^\circ C \ \\ p = 1 \text{ atm} \ \\ [X] = 1 \text{ M} \end{cases} \]

og \[Q_C \] er reaksjonskvotienten i reaksjonsligningen.