
2 Introduction

Figure 1.1 The Strategic Balance of Logic.
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3
Games

3.1 Introduction

In this first part we march through the mathematical details of zero-sum two-
person games of perfect information in order to be well prepared for the intro-
duction of the three games of the Strategic Balance of Logic (see Figure 1.1)
in the subsequent parts of the book. Games are useful as intuitive guides in
proofs and constructions but it is also important to know how to make the in-
tuitive arguments and concepts mathematically exact.

3.2 Two-Person Games of Perfect Information

Two-person games of perfect information are like chess: two players set their
wits against each other with no role for chance. One wins and the other loses.
Everything is out in the open, and the winner wins simply by having a better
strategy than the loser.

A Preliminary Example: Nim
In the game of Nim, if it is simplified to the extreme, there are two players I
and II and a pile of six identical tokens. During each round of the game player
I first removes one or two tokens from the top of the pile and then player II
does the same, if any tokens are left. Obviously there can be at most three
rounds. The player who removes the last token wins and the other one loses.

The game of Figure 3.1 is an example of a zero-sum two-person game of
perfect information. It is zero-sum because the victory of one player is the loss
of the other. It is of perfect information because both players know what the
other player has played. A moment’s reflection reveals that player II has a way
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Figure 3.3

cabulary L = {W}, where W is a four-place predicate symbol. Let M be an
L-structure2 with M = {1, 2} and

WM = {(a0, b0, a1, b1) 2 M4 : a0 + b0 + a1 + b1 = 6}.

Now we have just proved

M |= 8x09y08x19y1W (x0, y0, x1, y1). (3.1)

Conversely, if M is an arbitrary L-structure, condition (3.1) defines some
game, maybe not a very interesting one but a game nonetheless: Player I picks
an element a0 2 M , then player II picks an element b0 2 M . Then the same
is repeated: player I picks an element a1 2 M , then player II picks an element
b1 2 M . After this player II is declared the winner if (a0, b0, a1, b1) 2 WM,
and otherwise player I is the winner. By varying the structure M we can model
in this way various two-person two-round games of perfect information. This
gives a first hint of the connection between games and logic.

Games – a more general formulation

Above we saw an example of a two-person game of perfect information. This
concept is fundamental in this book. In general, the simplest formulation of
such a game is as follows (see Figure 3.4): There are two players3 I and II, a
domain A, and a natural number n representing the length of the game. Player
I starts the game by choosing some element x0 2 A. Then player II chooses
y0 2 A. After xi and yi have been played, and i + 1 < n, player I chooses
xi+1 2 A and then player II chooses yi+1 2 A. After n rounds the game ends.
To decide who wins we fix beforehand a set W ✓ A2n of sequences

(x0, y0, . . . , xn�1, yn�1) (3.2)
2 For the definition of an L-structure see Definition 5.1.
3 There are various names in the literature for player I and II, such as player I and player II,

spoiler and duplicator, Nature and myself, or Abelard and Eloise.
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Figure 3.4 A game.

and declare that player II wins the game if the sequence formed during the
game is in W ; otherwise player I wins. We denote this game by Gn(A,W ). For
example, if W = ;, player II cannot possibly win, and if W = A2n, player
I cannot possibly win. If W is a set of sequences (x0, y0, . . . , xn�1, yn�1)
where x0 = x1 and if moreover A has at least two elements, then II could not
possibly win, as she cannot prevent player I from playing x0 and x1 differently.
On the other hand, W could be the set of all sequences (3.2) such that y0 = y1.
Then II can always win because all she has to do during the game is make sure
that she chooses y0 and y1 to be the same element.

If player II has a way of playing that guarantees a sure win, i.e. the opponent
I loses whatever moves he makes, we say that player II has a winning strategy
in the game. Likewise, if player I has a way of playing that guarantees a sure
win, i.e. player II loses whatever moves she makes, we say that player I has
a winning strategy in the game. To make intuitive concepts, such as “way of
playing” more exact in the next chapter we define the basic concepts of game
theory in a purely mathematical way.

Example 3.1 The game of Nim presented in the previous chapter is in the
present notation G3({1, 2},W ), where

W =

(
(a0, b0, a1, b1, a2, b2) 2 {1, 2}6 :

nX
i=0

(ai + bi) = 6 for some n  2

)
.

We allow three rounds as theoretically the players could play three rounds even
if player II can force a win in two rounds.

Example 3.2 Consider the following game on a set A of integers:
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Example 3.5 The following game has no moves:

I II

If W = {;}, player II is the winner. If W = ;, player I is the winner. So this
is a game with 0 rounds. In practice one of the players would find these games
unfair as he or she loses without even having a chance to make a move. It is
like being invited to play a game of chess starting in a position where you are
already in check-mate.

3.3 The Mathematical Concept of Game

Let A be an arbitrary set and n a natural number. Let W ✓ A2n. We redefine
the game

Gn(A,W )

in a purely mathematical way. Let us fix two players I and II. A play of one of
the players is any sequence x̄ = (x0, . . . , xn�1) of elements of A. A sequence

(x̄; ȳ) = (x0, y0, . . . , xn�1, yn�1),

of elements of A is called a play (of Gn(A,W )). So we have defined the con-
cept of play without any reference to playing the game as an act. The play
(x̄; ȳ) is a win for player II if

(x0, y0, . . . , xn�1, yn�1) 2 W

and otherwise a win for player I.

Example 3.6 Let us consider the game of chess in this mathematical frame-
work. We modify the game so that the number of rounds is for simplicity ex-
actly n and Black wins a draw, i.e. if neither player has check-mated the other
player during those up to n rounds. If a check-mate is reached the rest of the
n-round game is of course irrelevant and we can think that the game is finished
with “dummy” moves. Let A be the set of all possible positions, i.e. config-
urations of the pieces on the board. A play x̄ of I (White) is the sequence of
positions where White has just moved. A play ȳ of II is the sequence of posi-
tions where Black has just moved. We let W be the set of plays (x̄; ȳ), where
either White has not obeyed the rules, or Black has obeyed the rules and White
has not check-mated Black. With the said modifications, chess is just the game
Gn(A,W ) with White playing as player I and Black playing as player II.
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A strategy of player I in the game Gn(A,W ) is a sequence

� = (�0, . . . ,�n�1)

of functions �i : Ai ! A. We say that player I has used the strategy � in the
play (x̄; ȳ) if for all 0 < i < n:

xi = �i(y0, . . . , yi�1)

and

x0 = �0.

The strategy � of player I is a winning strategy, if every play where I has used
� is a win for player I. Note that the strategy depends only on the opponent’s
moves. It is tacitly assumed that when the function �i+1 is used to determine
xi+1, the previous functions �0, . . . ,�i were used to determine the previous
moves x0, . . . , xn. Thus a strategy � is a winning strategy because of the con-
certed effect of all the functions �0, . . . ,�n�1.

A strategy of player II in the game Gn(A,W ) is a sequence

⌧ = (⌧0, . . . , ⌧n�1)

of functions ⌧i : Ai+1 ! A. We say that player II has used the strategy ⌧ in
the play (x̄; ȳ) if for all i < n:

yi = ⌧i(x0, . . . , xi).

The strategy ⌧ of player II is a winning strategy, if every play where player
II has used ⌧ is a win for player II. A player who has a winning strategy in
Gn(A,W ) is said to win the game Gn(A,W ).

3.4 Game Positions

A position of the game Gn(A,W ) is any initial segment

p = (x0, y0, . . . , xi�1, yi�1)

of a play (x̄; ȳ), where i  n. Positions have a natural ordering: a position p0

extends a position p, if p is an initial segment of p0. Of course, this extension-
relation is a partial ordering4 of the set of all positions, that is, if p0 extends p
and p00 extends p0, then p00 extends p, and if p and p0 extend each other, then
p = p0. The empty sequence ; is the smallest element, and the plays (x̄; ȳ) are
4 See Example 5.7 for the definition of partial order. Indeed this is a tree-ordering. See

Example 5.8 for the definition of tree-ordering.
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maximal elements of this partial ordering. A common problem of games is that
the set of all positions is huge.

A strategy of player I in position p = (x0, y0, . . . , xi�1, yi�1) in the game
Gn(A,W ) is a sequence

� = (�0, . . . ,�n�1�i)

of functions �j : Aj ! A. We say that player I has used strategy � after
position p in the play (x̄; ȳ), if (x̄; ȳ) extends p and for all j with i < j < n
we have

xj = �j�i(yi, . . . , yj�1)

and

xi = �0.

The strategy � of player I in position p is a winning strategy in position p, if
every play extending p where player I has used � after position p is a win for
player I.

A strategy of player II in position p in the game Gn(A,W ) is a sequence

⌧ = (⌧0, . . . , ⌧n�1�i)

of functions ⌧j : Aj+1 ! A. We say that player II has used strategy ⌧ after
position p in the play (x̄; ȳ) if (x̄; ȳ) extends p and for all j with i  j < n we
have

yj = ⌧j�i(xi, . . . , xj).

The strategy ⌧ of player II in position p is a winning strategy in position p, if
every play extending p where player II has used ⌧ after p is a win for player
II.

The following important lemma shows that if player II has a chance in the
beginning, i.e. player I does not already have a winning strategy, she has a
chance all the way.

Lemma 3.7 (Survival Lemma) Suppose A is a set, n is a natural num-
ber, W ✓ A2n and p = (x0, y0, . . . , xi�1, yi�1) is a position in the game
Gn(A,W ), with i < n. Suppose furthermore that player I does not have a
winning strategy in position p. Then for every xi 2 A there is yi 2 A such that
player I does not have a winning strategy in position p0 = (x0, y0, . . . , xi, yi).

Proof The proof is by contradiction. The intuition is clear: if player I had a
smart move xi so that he has a strategy for winning whatever the response yi of
player II is, then we could argue that, contrary to the hypothesis, player I had
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a winning strategy already in position p, as he wins whatever II moves. Let us
now make this idea more exact. Suppose there were an xi 2 A such that for all
yi 2 A player I has a winning strategy �yi in position p0 = (x0, y0, . . . , xi, yi).
We define a strategy � = (�0, . . . ,�n�1�i) of player I in position p as follows:
�0(;) = xi and

�j�i(yi, . . . , yj�i) = �yi(yi+1, . . . , yj�i).

This is a winning strategy of I in position p, contrary to our assumption that
none exists.

The following concept is of fundamental importance in game theory and in
applications to logic, in particular:

Definition 3.8 A game is called determined if one of the players has a win-
ning strategy. Otherwise the game is non-determined.

Virtually all games that one comes across in logic are determined. The fol-
lowing theorem is the crucial fact behind this phenomenon:

Theorem 3.9 (Zermelo) If A is any set, n is a natural number, and W ✓ A2n,
then the game Gn(A,W ) is determined.

Proof Suppose player I has no winning strategy. Then player II has a win-
ning strategy based on repeated use of Lemma 3.7. Player II notes that in the
beginning of the game, that is, in position ;, player I does not have a winning
strategy. Then by the Survival Lemma 3.7 she can, whatever player I moves,
find a move such that afterwards player I still does not have a winning strategy.
In short, the strategy of player II is to prevent player I from having a winning
strategy. After n rounds the game ends and player I still does not have a win-
ning strategy. That means player I has lost and player II has won. Let us now
make this more precise: We define a strategy

⌧ = (⌧0, . . . , ⌧n�1)

of player II in the game Gn(A,W ) as follows: Let a be some arbitrary element
of A. By Lemma 3.7 we have for each position p = (x0, y0, . . . , xi�1, yi�1)
in the game Gn(A,W ) such that player I does not have a winning strategy in
position p and each xi 2 A some yi 2 A such that player I does not have a
winning strategy in position p0 = (x0, y0, . . . , xi, yi). Let us denote this yi by

yi = f(p, xi).
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If p = (x0, y0, . . . , xi�1, yi�1) is a position in which player I does have a win-
ning strategy, we let f(p, xi) = a. We have defined a function f defined on po-
sitions p and elements xi 2 A. Let ⌧0(x0) = f(;, x0). Assuming ⌧0, . . . , ⌧i�1

have been defined already, let

⌧i(x0, . . . , xi) = f(p, xi),

where

p = (x0, y0, . . . , xi�1, yi�1)

and

y0 = ⌧0(x0)
yi�1 = ⌧i�1(x0, . . . , xi�1).

It is easy to see that in every play in which player II uses this strategy, every
position p is such that player I does not have a winning strategy in position p.
It is also easy to see that this is a winning strategy of player II.

3.5 Infinite Games

The concept of a game is by no means limited to games with just finitely many
rounds. Imagine a chess board which extends the usual board left and right
without end. Then the chess game could go on for infinitely many rounds with-
out the same configuration of pieces coming up twice. A simple infinite game
is one in which two players pick natural numbers each choosing a bigger num-
ber, if he or she can, than the opponent. There is no end to this game, since
there are infinitely many natural numbers. A third kind of infinite game is the
following:

Example 3.10 Suppose A is a set of real numbers on the unit interval. We
describe a game we denote by G(A). During the game the players decide the
decimal expansion of a real number r = 0.d0d1 . . . on the interval [0, 1]. Player
I decides the even digits d2n and player II the odd digits d2n+1. Player II
wins if r 2 A. If A is countable, say A = {bn : n 2 N}, player I has a
winning strategy: during round n he chooses the digit d2n so that r 6= bn.
If the complement of A is countable, player II wins with the same strategy.
What if A and its complement are uncountable? This is a well-known and
much studied hard question. (See e.g. Jech (1997).)
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Figure 3.5 An infinite game.

If A is any set, we use AN to denote infinite sequences

(x0, x1, . . .)

of elements of A. We can think of such sequences as limits of an increasing
sequence

(x0), (x0, x1), (x0, x1, x2), . . .

of finite sequences.
Let A be an arbitrary set. Let W ✓ AN. We define the game

G!(A,W )

as follows (see Figure 3.5): An infinite sequence

(x̄; ȳ) = (x0, y0, x1, y1, . . .),

of elements of A is called a play (of G!(A,W )). A play of one of the players
is likewise any infinite sequence x̄ = (x0, x1, . . .) of elements of A. The play
(x̄; ȳ) is a win for player II if

(x0, y0, x1, y1, . . .) 2 W

and otherwise a win for player I .
A strategy of player I in the game G!(A,W ) is an infinite sequence

� = (�0,�1, . . .)

of functions �i : Ai ! A. We say that player I has used the strategy � in the
play (x̄; ȳ) if for all i 2 N:

xi = �i(y0, . . . , yi�1)

and

x0 = �0.
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The strategy � of player I is a winning strategy, if every play where I has used
� is a win for player I.

A strategy of player II in the game G!(A,W ) is an infinite sequence

⌧ = (⌧0, ⌧1, . . .)

of functions ⌧i : Ai+1 ! A. We say that player II has used the strategy ⌧ in
the play (x̄; ȳ) if for all i < n:

yi = ⌧i(x0, . . . , xi).

The strategy ⌧ of player II is a winning strategy, if every play where player II
has used ⌧ is a win for player II. A player is said to win the game G!(A,W )
if he or she has a winning strategy in it.

A position of the infinite game G!(A,W ) is any initial segment

p = (x0, y0, . . . , xi�1, yi�1)

of a play (x̄; ȳ). We say that player I has used strategy � = (�0,�1, . . .) after
position p in the play (x̄; ȳ), if (x̄; ȳ) extends p and for all j with i < j we
have xj = �j�i(yi, . . . , yj�1) and xi = �0. The strategy � of player I is a
winning strategy in position p, if every play extending p where player I has
used � after position p is a win for player I. We say that player II has used
strategy ⌧ = (⌧0, ⌧1, . . .) after position p in the play (x̄; ȳ) if for all j with
i  j we have yj = ⌧j�i(xi, . . . , xj). The strategy ⌧ of player II is a winning
strategy in position p, if every play extending p where player II has used ⌧
after p is a win for player II.

An important example of a class of infinite games is the class of open or
closed games of length !. A subset W of AN is open,5 if

(x0, y0, x1, y1, . . .) 2 W

implies the existence of n 2 N such that

(x0, y0, . . . , xn�1, yn�1, x
0
n, y

0
n, x

0
n+1, y

0
n+1, . . .) 2 W

for all x0
n, y

0
n, x

0
n+1, y

0
n+1, . . . 2 A. Respectively, W is closed if AN \ W

is open. Finally, W is clopen if it is both open and closed. We call a game
G!(A,W ) closed (or open or clopen) if the set W is. We are mainly concerned
in this book with closed games. A typical strategy of player II in a closed game
is to “hang in there”, as she knows that if player I ends up winning the play
p = (x0, y0, . . .), that is, p /2 W , there is some n such that player I won the
game already in position (x0, y0, . . . , xn�1, yn�1).

5 The collection of open subsets of AN is a topology, hence the name.
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We can think of infinite games as limits of finite games as follows: Any
finite game Gn(A,W ) can be made infinite by disregarding the moves after
the usual n moves. The resulting infinite game is clopen (see Exercise 3.31).
On the other hand, if G!(A,W ) is an infinite game and n 2 N we can form an
n-round game by simply considering only the first n rounds of G!(A,W ) and
declaring a play of n rounds a win for player II if any infinite play extending
it is in W . Unless W is open or closed, there may be very little connection
between the resulting finite games and the original infinite game (see however
Exercise 3.32).

Lemma 3.11 (Infinite Survival Lemma) Suppose A is a set, W ✓ AN, and
p = (x0, y0, . . . , xi�1, yi�1) is a position in the game G!(A,W ), with i 2 N.
Suppose furthermore that player I does not have a winning strategy in position
p. Then for every xi 2 A there is yi 2 A such that player I does not have a
winning strategy in position p0 = (x0, y0, . . . , xi, yi).

Proof The proof is by contradiction. Suppose there were an xi 2 A such
that for all yi 2 A player I has a winning strategy �yi in position p0 =
(x0, y0, . . . , xi, yi). We define a strategy � = (�0,�1, . . .) of player I in posi-
tion p as follows: �0(;) = xi and for j > i,

�j�i(yi, . . . , yj�1) = �yi(yi+1, . . . , yj�i).

This is a winning strategy of player I in position p, contrary to assumption.

Theorem 3.12 (Gale–Stewart) If A is any set and W ✓ AN is open or closed,
then the game G!(A,W ) is determined.

Proof Suppose first W is closed and player I has no winning strategy. We
define a strategy

⌧ = (⌧0, ⌧1, . . .)

of player II in the game G!(A,W ) as follows: Let a be some arbitrary element
of A. By Lemma 3.11 we have for each position p = (x0, y0, . . . , xi�1, yi�1)
in the game G!(A,W ) such that player I does not have a winning strategy in
position p, and each xi 2 A, some yi 2 A such that player I does not have a
winning strategy in position p0 = (x0, y0, . . . , xi, yi). Let us denote this yi by

yi = f(p, xi).

If p = (x0, y0, . . . , xi�1, yi�1) is a position in which player I does have a
winning strategy, we let f(p, xi) = a. We have defined a function f de-
fined on positions p and elements xi 2 A. Let ⌧0(x0) = f(;, x0). Assuming
⌧0, . . . , ⌧i�1 have been defined already, let ⌧i(x0, . . . , xi) = f(p, xi), where
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p = (x0, y0, . . . , xi�1, yi�1) and y0 = ⌧0(x0), yi�1 = ⌧i�1(x0, . . . , xi�1).
It is easy to see that in every play in which player II uses this strategy, every
position p is such that player I does not have a winning strategy in position p.
It is also easy to see that this is a winning strategy of player II.

The proof is similar if W is open. It follows that G!(A,W ) is determined.

Theorem 3.12 can been vastly generalized, see e.g. (Jech, 1997, Chapter 33).
The Axiom of Determinacy says that the game G!(A,W ) is determined for all
sets A and W . However, this axiom contradicts the Axiom of Choice. By using
the Axiom of Choice one can show that there are sets A of real numbers such
that the game G(A) is not determined (see Exercise 3.37).

3.6 Historical Remarks and References

The mathematical theory of games was started by von Neumann and Morgen-
stern (1944). For the early history of two-person zero-sum games of perfect in-
formation, see Schwalbe and Walker (2001). See Mycielski (1992) for a more
recent survey on games of perfect information. Theorem 3.12 goes back to
Gale and Stewart (1953).

Exercises

3.1 Consider the following game: Player I picks a natural number n. Then
player II picks a natural number m. If 2m = n, then II wins, otherwise
I wins. Express this game in the form G1(A,W ).

3.2 Consider the following game: Player I picks a natural number n. Then
player II picks two natural numbers m and k. If m ·k = n, then II wins,
otherwise I wins. Express this game in the form G2(A,W ).

3.3 Consider G3(A,W ), where A = {0, 1, 2} and
1. W = {(x0, y0, x1, y1, x2, y2) 2 A3 : x0 = y2}.
2. W = {(x0, y0, x1, y1, x2, y2) 2 A3 : y0 6= x2 or y2 6= x0}.
3. W = {(x0, y0, x1, y1, x2, y2) 2 A3 : x0 6= y2 and x1 6= y2 and x2 6=

y2}.
Who has a winning strategy?

3.4 Suppose f : R ! R is a mapping. Express the condition that f is uni-
formly continuous as a game and as the truth of a first-order sentence in
a suitable structure.

Jouko Väänänen: Models and Games - Handout 1
30 Games

3.10 Examine the game determined by condition (3.1) M = N and WM =
{(a0, b0, a1, b1) 2 M4 : a0 < b0 and either a1 does not divide b0 or b1 =
a1 = 1 or b1 = a1 = b0}. Who has a winning strategy?

3.11 Suppose X is a set of positions of the game Gn(A,W ) such that

1. ; 2 X .
2. For all i < n, all (x0, y0, . . . , xi�1, yi�1) 2 X , and all xi 2 A there

is yi 2 A such that (x0, y0, . . . , xi, yi) 2 X .
3. If p = (x0, y0, . . . , xn�1, yn�1) 2 X , then p 2 W .

Show that player II has a winning strategy in the game Gn(A,W ). Give
such a set for the game of Example 3.1.

3.12 Suppose that player II has a winning strategy in the game Gn(A,W ).
Show that there is a set X of positions of the game Gn(A,W ) satisfying
conditions 1–3 of the previous exercise.

3.13 Suppose X is a set of positions of the game Gn(A,W ) such that

1. ; 2 X .
2. For all i < n, all (x0, y0, . . . , xi�1, yi�1) 2 X there is xi 2 A such

that for all yi 2 A we have (x0, y0, . . . , xi, yi) 2 X .
3. If p = (x0, y0, . . . , xn�1, yn�1) 2 X , then p /2 W .

Show that player I has a winning strategy in the game Gn(A,W ). Give
such a set for the game of Example 3.1 when we start with seven tokens.

3.14 Suppose that player I has a winning strategy in the game Gn(A,W ).
Show that there is a set X of positions of the game Gn(A,W ) satisfying
conditions 1–3 of the previous exercise.

3.15 Suppose A is finite. Describe an algorithm which searches for a winning
strategy for a player in Gn(A,W ), provided the player has one.

3.16 Finish the proof of Lemma 3.7 by showing that the strategy described in
the proof is indeed a winning strategy of player I.

3.17 Finish the proof of Theorem 3.9 by showing that the strategy described
in the proof is indeed a winning strategy of player II.

3.18 Consider G2(A,W ), where A = {0, 1} and

1. W = {(x0, y0, x1, y1) 2 A2 : x0 = y1}.
2. W = {(x0, y0, x1, y1) 2 A2 : y0 6= x1 or y1 6= x0}.
3. W = {(x0, y0, x1, y1) 2 A2 : x0 6= y1 and x1 6= y1}.

In each case give a winning strategy for one of the players.
3.19 Suppose � is a strategy of player I and ⌧ a strategy of player II in

Gn(A,W ). Show that there is exactly one play (x̄; ȳ) of Gn(A,W ) such
that player I has used � and player II has used ⌧ in it.

3.20 Show that at most one player can have a winning strategy in Gn(A,W ).
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5
Models

5.1 Introduction

The concept of a model (or structure) is one of the most fundamental in logic.
In brief, while the meaning of logical symbols ^,_, 9, . . . is always fixed,
models give meaning to non-logical symbols such as constant, predicate, and
function symbols. When we have agreed about the meaning of the logical and
non-logical symbols of logic, we can then define the meaning of arbitrary for-
mulas.

Depending on context and preference, models appear in logic in two roles.
They can serve the auxiliary role of clarifying logical derivation. For example,
one quick way to tell what it means for ' to be a logical consequence of  is
to say that in every model where  is true also ' is true. It is then an almost
trivial matter to understand why for example 8x9y' is a logical consequence
of 9y8x' but 8y9x' is in general not.

Alternatively models can be the prime objects of investigation and it is the
logical derivation that is in an auxiliary role of throwing light on properties of
models. This is manifestly demonstrated by the Completeness Theorem which
says that any set T of first-order sentences has a model unless a contradiction
can be logically derived from T , which entails that the two alternative perspec-
tives of models are really equivalent. Since derivations are finite, this implies
the important Compactness Theorem: If a set of first-order sentences is such
that each of its finite subsets has a model it itself has a model. The Compact-
ness Theorem has led to an abundance of non-isomorphic models of first-order
theories, and constitutes the origin of the whole subject of Model Theory. In
this chapter models are indeed the prime objects of investigation and we in-
troduce auxiliary concepts such as the Ehrenfeucht–Fraı̈ssé Game that help us
understand models.

We use the words “model” and “structure” as synonyms. We have a slight
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preference for the word “structure” in a context where absolute generality pre-
vails and the structures are not assumed to satisfy any particular axioms. Re-
spectively, our preference is to call a structure that satisfies some given axioms
a model, so a structure satisfying a theory is called a model of the theory.

5.2 Basic Concepts

A vocabulary is any set L of predicate symbols P,Q,R, . . ., function sym-
bols f, g, h, . . ., and constant symbols c, d, e, . . .. Each vocabulary has an arity-
function

#L : L ! N

which tells the arity of each symbol. Thus if P 2 L, then P is a #L(P )-ary
predicate symbol. If f 2 L, then f is a #L(f)-ary function symbol. Finally,
#L(c) is assumed to be 0 for constants c 2 L. Predicate or function symbols
of arity 1 are called unary or monadic, and those of arity 2 are called binary.
A vocabulary is called unary (or binary) if it contains only unary (respectively,
binary) symbols. A vocabulary is called relational if it contains no function or
constant symbols.

Definition 5.1 An L-structure (or L-model) is a pair M = (M,ValM),
where M is a non-empty set called the universe (or the domain) of M, and
ValM is a function defined on L with the following properties:

1. If R 2 L is a relation symbol and #L(R) = n, then ValM(R) ✓ Mn.
2. If f 2 L is a function symbol and #L(f) = n, then ValM(f) : Mn ! M .
3. If c 2 L is a constant symbol, then ValM(c) 2 M .

We use Str(L) to denote the class of all L-structures.

We usually shorten ValM(R) to RM, ValM(f) to fM, and ValM(c) to cM.
If no confusion arises, we use the notation

M = (M,RM
1 , . . . , RM

n , fM
1 , . . . , fM

m , cM1 , . . . , cMk )

for an L-structure M, where L = {R1, . . . , Rn, f1, . . . , fm, c1 . . . , ck}.

Example 5.2 Graphs are L-structures for the relational vocabulary L = {E},
where E is a predicate symbol with #L(E) = 2. Groups are L-structures for
L = {�}, where � is a binary function symbol. Fields are L-structures for
L = {+, ·, 0, 1}, where +, · are binary function symbols and 0, 1 are constant
symbols. Ordered sets (i.e. linear orders) are L-structures for the relational
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vocabulary L = {<}, where < is a binary predicate symbol. If L = ;, an
L-structure (M) is a structure with just the universe and no structure in it.

If M is a structure and ⇡ maps M bijectively onto another set M 0, we can
use ⇡ to copy the relations, functions, and constants of M on M 0. In this way
we get a perfect copy M0 of M which differs from M only in the respect that
the underlying elements are different. We then say that M0 is an isomorphic
copy of M. For all practical purposes we consider the structures M and M0

as one and the same structure. However, they are not the same structure, just
isomorphic. This may sound as if isomorphism was a rather trivial matter, but
this is not true. In many cases it is a highly non-trivial enterprise to investigate
whether two structures are isomorphic or not. In the realm of finite structures
the question of deciding whether two given structures are isomorphic or not is
a famous case of a complexity question which is between P (polynomial time)
and NP (non-deterministic polynomial time) and about which we do not know
whether it is NP-complete. In the light of present knowledge it is conceivable
that this question is strictly between P and NP.

Definition 5.3 L-structures M and M0 are isomorphic if there is a bijection

⇡ : M ! M 0

such that

1. For all a1, . . . , a#L(R) 2 M :

(a1, . . . , a#L(R)) 2 RM () (⇡(a1), . . . ,⇡(a#L(R))) 2 RM0
.

2. For all a1, . . . , a#L(f) 2 M :

fM0
(⇡(a1), . . . ,⇡(a#L(f))) = ⇡(fM(a1, . . . , a#L(f))).

3. For all c 2 L: ⇡(cM) = cM
0
.

In this case we say that ⇡ is an isomorphism M ! M0, denoted

⇡ : M ⇠= M0.

If also M = M0, we say that ⇡ is an automorphism of M.

Example 5.4 Unary (or monadic) structures, i.e. L-structures for unary L, are
particularly simple and easy to deal with. Figure 5.1 depicts a unary structure.
Suppose L consists of unary predicate symbols R1, . . . , Rn and A is an L-
structure. If X ✓ A and d 2 {0, 1}, let Xd = X if d = 0 and Xd = A \ X
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Figure 5.1 A unary structure.

otherwise. Suppose ✏ : {1, . . . , n} ! {0, 1}. The ✏-constituent of A is the set

C✏(A) =
n\

i=1

(RA
i )

✏(i).

A priori, the 2n sets C✏(A) can each have any cardinality whatsoever. It is the
nature of unary structures that the constituents are totally independent of each
other. If A ⇠= B, then

|C✏(A)| = |C✏(B)| (5.1)

for every ✏. Conversely, if two L-structures A and B satisfy Equation (5.1) for
every ✏, then A ⇠= B (see Exercise 5.6). We can say that the function ✏ 7!
|C✏(A)| characterizes completely (i.e. up to isomorphism) the unary structure
A. There is nothing more we can say about A but this function.

Example 5.5 Equivalence relations, i.e. L-structures M for L = {⇠} such
that ⇠M is a symmetric (x ⇠ y ) y ⇠ x), transitive (x ⇠ y ⇠ z ) x ⇠ z),
and reflexive (x ⇠ x) relation on M can be characterized almost as easily
as unary structures. Let for every cardinal number   |M | the number of
equivalence classes of ⇠M of cardinality  be denoted by EC(M). If A ⇠= B,
then

EC(A) = EC(B) (5.2)

for every   |A|. Conversely, if two L-structures A and B satisfy Equa-
tion (5.2) for every   |A [B|, then A ⇠= B (see Exercise 5.12). We can say
that the function  7! EC(A) characterizes completely (i.e. up to isomor-
phism) the equivalence relation A. There is nothing more we can say about A
but this function. For equivalence relations on a finite universe of size n this
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Figure 5.4 A successor structure.

If M is a successor structure, let CmpM be the set of components of M and

CCn(M) = |{C 2 CmpM : C is an n-cycle component}|,

CC1(M) = |{C 2 CmpM : C is a Z-component}|.

Two successor structures M and N are isomorphic if and only if CCa(M) =
CCa(N ) for all a 2 N [ {1}.

5.3 Substructures

The concept of a substructure is in principle a very simple one, especially for
relational vocabularies. There are however subtleties which deserve special
attention when function symbols are involved.

Definition 5.10 An L-structure M is a substructure of another L-structure
M0, in symbols M ✓ M0, if:

1. M ✓ M 0.
2. RM = RM0 \Mn if R 2 L is an n-ary predicate symbol.
3. fM = fM0 � Mn if f 2 L is an n-ary function symbol.
4. cM = cM

0
if c 2 L is a constant symbol.

Substructures are particularly easy to understand in the case that L is re-
lational. Then any subset M of an L-structure M0 determines a substruc-
ture M the universe of which is M . If L is not relational we have to worry
about the question whether M is closed under the functions fM0

, f 2 L,
and whether the interpretations cM

0
of constant symbols c 2 L are in M .

For example, if L = {f} where f is a unary function symbol, then any sub-
structure of an L-structure which contains an element a has to contain also
fM0

(a), fM0
(fM0

(a)), etc. A substructure of a group need not be a subgroup
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even when it is closed under the group operation. For example, (N,+) is a
substructure of (Z,+) but it is not a group. A substructure of a linear order is
again a linear order. Similarly, a substructure of a partial order is again a partial
order. A substructure of a tree is a tree if it has a smallest element.

Lemma 5.11 Suppose L is a vocabulary, M an L-structure, and X ✓ M .
Suppose furthermore that either L contains constant symbols or X 6= ;. There
is a unique L-structure N such that:

1. N ✓ M.
2. X ✓ N .
3. If N 0 ✓ M and X ✓ N 0, then N ✓ N 0.

Proof Let X0 = X [ {cM : c 2 L} and inductively

Xn+1 = Xn [ {fM(a1, . . . , a#L(f)) : a1, . . . , a#L(f) 2 Xn, f 2 L}.

It is easy to see that the set N =
S

n2N Xn is the universe of the unique
structure N claimed to exist in the lemma.

We call the unique structure N of Lemma 5.11 the substructure of M gen-
erated by X and denote it by [X]M. The following lemma is used repeatedly
in the sequel.

Lemma 5.12 Suppose L is a vocabulary. Suppose M and N are L-structures
and ⇡ : M ! N is a partial mapping. There is at most one isomorphism
⇡⇤ : [dom(⇡)]M ! [rng(⇡)]N extending ⇡.

5.4 Back-and-Forth Sets

One of the main themes of this book is the question: Given two structures M
and N , how do we measure how close they are to being isomorphic? They may
be non-isomorphic for a totally obvious reason, e.g. two graphs one of which
has a triangle while the other does not. They may also be non-isomorphic for
an extremely subtle reason which involves the use of the Axiom of Choice (see
e.g. Lemma 9.9). One of the basic tools in trying to answer this question is the
concept of partial isomorphism.

Definition 5.13 Suppose L is a vocabulary and M,M0 are L-structures.
A partial mapping ⇡ : M ! M 0 is a partial isomorphism M ! M0 if
there is an isomorphism ⇡⇤ : [dom(⇡)]M ! [rng(⇡)]M0 extending ⇡. We
use Part(M,M0) to denote the set of partial isomorphisms M ! M0. If
M = M0 we call ⇡ a partial automorphism.
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Note that the extension ⇡⇤ referred to in Definition 5.13 is by Lemma 5.12
necessarily unique.

The main topic of this section, the back-and-forth sets, are very useful weaker
versions of isomorphisms. To get a picture of this, suppose f : A ⇠= B. Then
f 2 Part(A,B) and we can go back and forth between A and B with f in the
following sense:

8a 2 A9b 2 B(f(a) = b) (5.6)

8b 2 B9a 2 A(f(a) = b). (5.7)

We now generalize this to a situation where we do not quite have an isomor-
phism but only a set P which reflects the back and forth conditions (5.8) and
(5.9) of an isomorphism.

Definition 5.14 Suppose A and B are L-structures. A back-and-forth set for
A and B is any non-empty set P ✓ Part(A,B) such that

8f 2 P8a 2 A9g 2 P (f ✓ g and a 2 dom(g)) (5.8)

8f 2 P8b 2 B9g 2 P (f ✓ g and b 2 rng(g)). (5.9)

The structures A and B are said to be partially isomorphic, in symbols A 'p

B, if there is a back-and-forth set for them.

Lemma 5.15 The relation 'p is an equivalence relation on Str(L).

Proof The relation 'p is reflexive, because {idA} is a back-and-forth set for
A and B. If P is a back-and-forth set for A and B, then {f�1 : f 2 P} is a
back-and-forth set for B and A. Finally, if P1 is a back-and-forth set for A and
B and P2 is a back-and-forth set for B and C, then {f2 � f1 : f1 2 P1, f2 2
P2} is a back-and-forth set for A and C, where we stipulate dom(f2 � f1) =
f�1
1 (dom(f2)).

Proposition 5.16 If A 'p B, where A and B are countable, then A ⇠= B.

Proof Let us enumerate A as (an : n < !) and B as (bn : n < !). Let P
be a back-and-forth set for A and B. Since P 6= ;, there is some f0 2 P . We
define a sequence (fn : n < !) of elements of P as follows: Suppose fn 2 P
is defined. If n is even, say n = 2m, let y 2 B and fn+1 2 P such that
fn [ {(am, y)} ✓ fn+1. If n is odd, say n = 2m+1, let x 2 A and fn+1 2 P
such that fn [ {(x, bm)} ✓ fn+1. Finally, let

f =
1[

n=0

fn.

Clearly, f : A ⇠= B.
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This proposition is not true for uncountable structures. Indeed, let L = ;
and let A and B be any infinite L-structures. Then there is a back-and-forth
set for A and B (Exercise 5.28). Thus A 'p B. But A 6⇠= B if, for example,
A = Q and B = R. The failure of Proposition 5.16 to generalize is a major
topic in the sequel.

Proposition 5.17 Suppose A and B are dense linear orders without end-
points. Then A 'p B.

Proof Let P = {f 2 Part(A,B) : dom(f) is finite}. It turns out that this
straightforward choice works. Clearly, P 6= ;. Suppose then f 2 P and a 2 A.
Let us enumerate f as {(a1, b1), . . . , (an, bn)} where a1 < . . . < an. Since f
is a partial isomorphism, also b1 < . . . < bn. Now we consider different cases.
If a < a1, we choose b < b1 and then f [ {(a, b)} 2 P . If ai < a < ai+1, we
choose b 2 B so that bi < b < bi+1 and then f [ {(a, b)} 2 P . If an < a, we
choose b > bn and again f [{(a, b)} 2 P . Finally, if a = ai, we let b = bi and
then f [ {(a, b)} = f 2 P . We have proved (5.8). Condition (5.9) is proved
similarly.

Putting Proposition 5.16 and Proposition 5.17 together yields the famous
result of Cantor (1895): countable dense linear orders without endpoints are
isomorphic. See Exercise 6.29 for a more general result.

5.5 The Ehrenfeucht–Fraı̈ssé Game

In Section 4.3 we introduced the Ehrenfeucht–Fraı̈ssé Game played on two
graphs. This game was used to measure to what extent two graphs have sim-
ilar properties, especially properties expressible in the first-order language of
graphs limited to a fixed quantifier rank. In this section we extend this game to
the context of arbitrary structures, not just graphs.

Let us recall the basic idea behind the Ehrenfeucht–Fraı̈ssé Game. Suppose
A and B are L-structures for some relational L. We imagine a situation in
which two mathematicians argue about whether A and B are isomorphic or
not. The mathematician that we denote by II claims that they are isomorphic,
while the other mathematician whom we call I claims the models have an
intrinsic structural difference and they cannot possibly be isomorphic.

The matter would be quickly resolved if II was required to show the claimed
isomorphism. But the rules of the game are different. The rules are such that
II is required to show only small pieces of the claimed isomorphism.

More exactly, I asks what is the image of an element a1 of A that he chooses

Jouko Väänänen: Models and Games - Handout 1


